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A B S T R A C T   

Recent studies have shown that most Atmospheric Model Intercomparison Project (AMIP5) models that partic-
ipated in the fifth phase of the coupled model intercomparison project (CMIP5) overestimate surface latent (QLH) 
and sensible (QSH) heat fluxes over tropical oceans. This study aims to quantify and understand any improvement 
in simulated QLH and QSH in AMIP6 models compared to AMIP5 models with the same horizontal resolutions. To 
accomplish this, we compare the Ocean Atmosphere air-sea Flux (OAFlux) dataset to nine AMIP5 and nine 
AMIP6 models integrated over 30 years (1979–2008). We found that all the AMIP5 and AMIP6 models over-
estimate both components of fluxes, but all of the AMIP6 models performed better than their AMIP5 counterparts 
over the tropical oceans (30◦S-30◦N). Yet, systematic spatial biases remain, which leads to only a small 
improvement in the simulated fluxes. For example, the root mean squared error (RMSE) and mean bias in QLH in 
AMIP5 are 30 and 21 W m− 2 compared to 28 and 19 W m− 2 in AMIP6. This is an improvement of 2 W m− 2 for 
both RMSE and bias in QLH, yielding a reduction in QLH bias by 10% and RMSE by 7%. For QSH, an improvement 
of 1 W m− 2 is seen in both bias and RMSE, yielding a reduction in QSH bias by 25% and RMSE by 13%. The 
primary reason for the improvement in QLH in AMIP6 is the better representation of the 10m wind speed and air- 
sea humidity difference than those in AMIP5. The improvement in QSH is due to an improvement in air-sea 
temperature difference. These results offer guidance to the modeling community to improve model simulation 
of near-surface meteorological variables in the tropics.   

1. Introduction 

It is well known that the ocean and atmosphere interact through air- 
sea fluxes of mass, energy, and momentum. These fluxes play important 
roles in the ocean’s influence on weather and climate and the atmo-
sphere’s influence on ocean variability (e.g., Jiang et al., 2005; DeMott 
et al., 2015; Hagos et al., 2021). The net surface heat flux includes two 
turbulent terms (latent heat flux QLH, and sensible heat flux QSH) and two 
radiation terms (shortwave and longwave). The bulk formulae to 
calculate latent and sensible heat fluxes are given by: 

QLH = ρLEVaCE(qs − qa) (1)  

QSH = ρCpVaCH(TS − Ta) (2)  

where ρ is the density of air at the air-sea surface determined using the 
ideal gas law, LE is the latent heat of evaporation (~2.5 × 106 J Kg− 1), Va 
is the wind speed at 10 m, CE and CH are the bulk transfer coefficients of 
latent heat and sensible heat, respectively; qs is the saturation specific 
humidity at the sea surface temperature (SST), qa is the specific humidity 
of near-surface air, Cp is the isobaric specific heat of air (1008 J Kg− 1 

K− 1), Ts is the SST, and Ta is the near-surface air temperature. 
The QLH and QSH can significantly influence the oceanic mixed layer 

and the atmospheric planetary boundary layer (PBL) (e.g., Sengupta 
et al., 2002; DeMott et al., 2014). As a result, evaluation of these flux 
components in contemporary models is important. For example, Zhang 
et al. (2018a, 2018b) assessed the performance of the multi-model 
ensemble (MME) based on models included in the fifth phase of the 
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Coupled Model Intercomparison Project (CMIP5). They found that the 
mean QLH in the MME compared well with observations except near 
coastal regions and over the tropical oceans; in those areas, the MME 
overestimated the QLH. Cao et al. (2015) evaluated 14 CMIP5 models for 
their accuracy in capturing QLH in the Pacific. They found that models 
are able to capture the climatological distribution of latent heat flux 
reasonably well, but the amplitudes are generally overestimated. Similar 
model evaluation studies have also been conducted using coupled 
models for land surface energy and water budgets (e.g., Schwingshackl 
et al., 2018; Yang et al., 2019; Li et al., 2021). 

Most model-data comparison studies concerning surface heat fluxes 
evaluate coupled ocean-atmosphere models (e.g., Zhang et al., 2018a, 
2018b; Wild, 2020; Li et al., 2021). Therefore, we now have a better 
understanding of the performance of the coupled models in simulation 
of QLH and QSH. However, model evaluation studies for surface heat 
fluxes in atmospheric-only models are rare (Zhou et al., 2019, 2020). As 
a result, we have limited understanding of the accuracy of QLH and QSH 

in atmosphere-only models. Moreover, given that the atmospheric 
model intercomparison project (AMIP) models from the 5th (AMIP5) 
and 6th (AMIP6) phases of CMIP are forced with prescribed SST, the 
intermodel differences coming from the differences in SST are negli-
gible. Therefore, any differences in QLH and QSH in AMIP models argu-
ably come from other parameters used to calculate these fluxes. On the 
other hand, the SST difference between CMIP models can be significant 
(Li and Xie, 2012), leading to intermodel differences in simulated fluxes 
(e.g., Reichler and Kim, 2008; Li and Xie, 2012). 

Moreover, understanding the role of different variables in the AMIP 
simulations may help in understanding the behavior of their coupled 
counterparts. For example, Hourdin et al. (2015) compared 20 CMIP5 
models and stand-alone AMIP atmospheric simulations with prescribed 
SST. They found that surface evaporation controls the amplitude of the 
surface temperature response to the overestimation of surface heat flux. 
DeMott et al. (2014) analyzed three general circulation models and 
compared them to their atmosphere-only counterparts. They showed 
that coupled models exhibit enhanced surface fluxes and intraseasonal 
oscillation than atmosphere-only models. They also found that specific 
humidity can explain ~20% of the variance in tropical Indian Ocean 
latent heat flux variance, and temperature can explain 50% of tropical 
Indian Ocean sensible heat flux. Xiang et al. (2017) found that the 
spurious double intertropical convergence zone (double ITCZ) in CMIP5 
coupled models can be related to their atmospheric components. 

Among the few studies that explored the biases concerning QLH in 
coupled and uncoupled models, Găinuşă-Bogdan et al. (2018) found a 
systematic spatial bias pattern in QLH that was due to bias in near-surface 
winds and relative humidity in CMIP5 models. Zhou et al. (2020) found 
that most AMIP5 models overestimate QLH and QSH over oceans away 
from the equator, especially in the northern and southern Pacific Ocean 
and the southern Indian Ocean. More precisely, Zhou et al. (2020) found 
that all 20 AMIP5 models overestimated QLH, and 18 out of 20 AMIP5 
models overestimated QSH. We further extend Zhou et al. (2020) with the 
following goals in mind: (i) to quantify and understand any improve-
ment in the simulated QLH and QSH in AMIP6 compared to AMIP5 that is 
independent of model resolution (we use nine different AMIP models 
that have the same resolution in versions 5 and 6); (ii) to find the pa-
rameters that are responsible for biases in these models; (iii) to find out 
which parameters led to improvement, if any, in simulated fluxes in 
AMIP6 compared with AMIP5; and (iv) to explore the effect of inter- 
model resolution differences on simulated fluxes. 

The rest of the paper is organized as follows: A description of the 
AMIP5 and AMIP6 models, observational data, and methods are given in 
section 2, followed by detailed model-data comparisons and the possible 
causes behind model bias in section 3. Conclusions are given in section 
4. 

2. Model, data, and method 

2.1. AMIP models 

The AMIP project was initiated in 1989 to generate and provide 
systematic evaluations of comparable integrations from the atmospheric 
GCMs (AGCMs) (Gates, 1992, 1999). AMIP5 (Taylor, 2001) and AMIP6 
(Eyring et al., 2016; Feng et al., 2020) are included as an integral part of 
CMIP5 and CMIP6 to evaluate the performance of AGCMs. As an 
extension of AMIP5, several improvements were made in AMIP6. For 
example, AMIP6 models used the latest dataset that is consistent with 
the reanalysis to overcome the large and unrealistic changes in the sea 
ice concentration (Hurrell et al., 2008; Eyring et al., 2016). For the SST, 
both AMIP5 and AMIP6 models have valid data defined at all points to 
remove the SST bias caused by the undefined points (Hyder et al., 2018). 
In addition, identical observed SST and sea ice concentrations are used 
in all simulations in the AMIP6 experimental protocol (Eyring et al., 
2016). 

Out of the 20 AMIP5 models studied in Zhou et al. (2020), only nine 

Table 1 
Description of the nine AMIP5 and AMIP6 models used in this study.    

AMIP5 
Model 
(resolution, 
vertical 
levels)  

AMIP6 
Model 
(resolution, 
vertical 
levels)  

Institution  Country  Reference 

1 ACCESS1–0 
(1.25◦ ×

1.9◦, 38) 

ACCESS- 
ESM1–5 
(1.25◦ ×

1.9◦, 38) 

Collaboration 
for Australian 
Weather and 
Climate 
Research 

Australia Ziehn et al. 
(2020) 

2 BNU-ESM 
(2.8◦ ×

2.8◦, 26) 

BCC-ESM1 
(2.8◦ ×

2.8◦,26) 

Beijing Climate 
Center 

China Wu et al. 
(2020) 

3 CanAM4 
(2.8◦ ×

2.8◦, 26) 

CanESM5 
(2.8◦ ×

2.8◦, 49) 

Canadian 
Centre for 
Climate 
Modeling and 
Analysis 

Canada Swart et al. 
(2019) 

4 CESM1- 
CAM5 
(0.94◦ ×

1.25◦, 27) 

CESM2 
(0.94◦ ×

1.25◦ , 32) 

National 
Science 
Foundation 
Department of 
Energy, 
National Center 
for Atmospheric 
Research 

USA Danabasoglu 
et al. (2020) 

5 GISS-E2-R 
(2◦ × 2.5◦, 
40) 

GISS-E2–1- 
G 
(2◦ × 2.5◦, 
40) 

NASA Goddard 
Institute for 
Space Studies 

USA Bauer et al. 
(2020) 

6 INM-CM4 
(1.5◦ × 2◦, 
21) 

INM-CM4–8 
(1.5◦ × 2◦, 
21) 

Institute for 
Numerical 
Mathematics 

Russia Volodin et al. 
(2019) 

7 MIROC5 
(1.4◦ ×

1.4◦, 40) 

MIROC6 
(1.4◦ ×

1.4◦, 81) 

Atmosphere 
and Ocean 
Research 
Institute, 
National 
Institute for 
Environmental 
Studies, and 
Japan Agency 
for Marine- 
Earth Science 
and Technology 

Japan Shiogama 
et al. (2019) 

8 MPI-ESM- 
LR 
(1.9◦ ×

1.9◦, 47) 

MPI- 
ESM1–2-LR 
(1.9◦ ×

1.9◦, 47) 

Max Planck 
Institute for 
Meteorology 

Germany Mauritsen 
et al. (2019) 

9 MRI- 
CGCM3 
(1.1◦ ×

1.1◦, 48) 

MRI- 
ESM2–0 
(1.1◦ ×

1.1◦, 80) 

Meteorological 
Research 
Institute 

Japan Yukimoto 
et al. (2019)  
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were used here because (i) these nine models with varying resolutions 
participated in AMIP6 without change in horizontal resolutions (the 
horizontal resolution is maintained from AMIP5; Table 1), and (ii) all 
parameters needed for this study were available. The horizontal reso-
lutions of these models range from 0.94◦ × 1.25◦ (CESM1-CAM5 and 
CESM2) to 2.8◦ × 2.8◦ (BNU-ESM, CanAM4, BCC-ESM1, and CanESM5). 
The number of vertical layers varies from 21 (INM-CM4) to 48 (MRI- 
CGCM3) in AMIP5 models, and from 21 (INM-CM4–8) to 81 (MIROC6) 
in AMIP6 models. Out of these 9 models, 4 AMIP6 models (CanESM5, 
CESM2, MIROC6, MRI-ESM2–0) have more vertical levels than their 
AMIP5 version. All calculations were conducted for simulations span-
ning 30 years (1979–2008). All the models used observed monthly SSTs 
(Fiorino, 1996; Hurrell et al., 2008; Li et al., 2015; Eyring et al., 2016) as 
the lower boundary conditions. 

2.2. OAFlux data 

Monthly latent and sensible heat fluxes, and relevant bulk variables 
(Va,Ts, Ta, qa, see equations 1 and 2) were taken from the Objectively 
Analyzed air-sea heat Fluxes (OAFlux; 1◦ × 1◦; Yu and Weller, 2007; Yu 
et al., 2008) over the same period (1979–2008). The other popular 
blended flux product, TROPFlux (Kumar et al., 2012), has also been 
found to perform on par with the OAFlux when compared with obser-
vations (de Szoeke et al., 2015). However, a few other studies (e.g., 
Rahaman and Ravichandran, 2013) found OAFlux to perform better 
than TROPFlux for QLH and specific humidity over the North Indian 
Ocean when compared to in situ observations. Kumar et al. (2012) found 
that OAFlux is better than TROPFlux, especially over regions with 
abundant low clouds, such as the eastern equatorial Pacific and Atlantic 
oceans. Pinker et al. (2014) showed that OAFlux biases in the monthly 
latent heat and sensible heat fluxes at the surface are less than 5 W m− 2 

and 2 W m− 2, respectively, and are expected to be much smaller for 
seasonal and annual means and when averaged over a larger region. A 
detailed assessment of the accuracy latent and sensible heat fluxes in 
OAFlux over the global oceans is provided in Bentamy et al. (2017). For 

consistent model-data comparisons, we interpolate all model output and 
observational data to a uniform resolution of 2.5◦ x 2.5◦. Also, for 
simplicity, we refer to OAFlux as an observation. 

3. Methods 

To find the bulk factors that are responsible for the structure of 
spatial bias in latent and sensible heat fluxes, we apply the decomposi-
tion method as in Hourdin et al. (2015), which we describe here briefly. 

The QLH can be expressed as: 

QLH = γ|Va|qsat(Ta)
[
αL

/
RvT2

a δT + (α − RH)
]

(3)  

where γ = ρLECE, Rv is the gas constant for water vapor, and RH is the 
relative humidity, δT = Ts − Ta, and α = 0.98, which accounts for the 
smaller evaporation of salty water than fresh water. 

The bias in QLH is computed as: 

ΔQLH = ΔLHdyn + ΔLHQsat + ΔLHRH + ΔLHδT (4)  

where ΔLHdyn is contribution of bias from Va, ΔLHQsat is contribution of 
bias from saturation humidity (Qsat), ΔLHRH is contribution of bias from 
relative humidity (RH), and ΔLHδT is contribution of bias from δT, and 
they are computed as: 

ΔLHdyn = γΔ|Va|qsat(Ta)

[

αL
Rv

T2
a δT + (α − RH)

]

(5)  

ΔLHQsat = γ|Va|qsat(Ta)L
/

RvT2
a

[
αδT

(
L
/

RvT2
a − 2

/
Ta
)
+ (α − RH)

]
ΔTa

(6)  

ΔLHRH = − γ|Va|qsat(Ta)ΔRH (7)  

ΔLHδT = γ|Va|αβqsat(Ta)ΔδT (8) 

Where β = L
RvT2

a
= 0.06 is a constant. 

qsat was calculated as (Smith et al., 1999): 

Fig. 1. Annual average (1979–2008) of the turbulent heat fluxes (W m− 2) and bulk variables: 10 m wind (m s− 1), qs-qa (g kg− 1) and Ts-Ta (K) from (left panel) 
OAFlux, (middle panel) AMIP5, and (right panel) AMIP6 over the tropical oceans. 
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Fig. 2. The RMSE (1979–2008) of the (a-b) QLH (W m− 2), (c-d) QSH (W m− 2), (e-f) 10 m wind speed (m s− 1), (g-h) 2 m humidity (g kg− 1) and (i-j) 2 m temperature (K) 
from AMIP5 and AMIP6 compared to OAFlux. 

Table 2 
The bias (W m− 2), RMSE (W m− 2), and CC for latent heat flux (QLH) and sensible heat flux (QSH) from AMIP5 (or A5) and AMIP6 (or A6) against OAFlux. Model 
numbers are following Table 1. Model numbers in bold indicate models with finer horizontal resolutions (< 1.5◦). All are averaged over 30◦S-30◦N.  

Model # QLH QSH 

Bias RMSE CC Bias RMSE CC 

A5 A6 A5 A6 A5 A6 A5 A6 A5 A6 A5 A6 

1 20 17 30 26 0.93 0.94 3 2 8 8 0.71 0.73 
2 19 17 28 27 0.92 0.92 6 4 10 9 0.65 0.68 
3 20 17 29 27 0.91 0.91 6 5 11 10 0.68 0.70 
4 15 15 26 25 0.93 0.94 3 2 7 7 0.73 0.74 
5 27 25 35 33 0.94 0.95 4 4 8 7 0.72 0.73 
6 26 24 35 31 0.93 0.93 10 8 16 13 0.77 0.77 
7 26 23 33 31 0.94 0.94 4 3 7 7 0.78 0.78 
8 18 16 26 24 0.93 0.93 3 3 7 6 0.74 0.75 
9 18 17 27 26 0.93 0.93 3 2 7 7 0.79 0.81 
Ensemble 

(all models) 
21 19 30 28 0.93 0.94 5 4 9 8 0.73 0.75 

Ensemble 
(finer resolutions) 

20 18 29 27 0.93 0.94 3 2 7 7 0.75 0.77 

Ensemble 
(coarser resolutions) 

22 20 31 29 0.92 0.93 6 5 10 9 0.71 0.73  

X. Zhou et al.                                                                                                                                                                                                                                    



Atmospheric Research 274 (2022) 106214

5

Table 3 
The bias (W m− 2), RMSE (W m− 2), and CC for latent heat flux (QLH) and sensible heat flux (QSH) from AMIP5 (or A5) and AMIP6 (or A6) against OAFlux. Model 
numbers are following Table 1. Model numbers in bold indicate models with finer horizontal resolutions (< 1.5◦). All are averaged over 10◦S-10◦N.  

Model # QLH QSH 

Bias RMSE CC Bias RMSE CC 

A5 A6 A5 A6 A5 A6 A5 A6 A5 A6 A5 A6 

1 18 16 36 25 0.95 0.95 2 1 4 3 0.81 0.83 
2 17 16 26 24 0.93 0.95 5 2 7 6 0.78 0.79 
3 17 15 26 25 0.92 0.94 5 4 6 7 0.75 0.76 
4 14 14 24 23 0.95 0.96 2 1 4 4 0.82 0.85 
5 26 24 32 32 96 0.97 2 2 5 4 0.80 0.83 
6 25 23 33 30 94 0.95 9 6 13 9 0.84 0.86 
7 23 21 31 29 94 0.96 3 2 4 3 0.85 0.88 
8 17 15 24 23 94 0.94 3 2 4 3 0.83 0.85 
9 17 15 23 22 0.94 0.95 3 1 3 3 0.89 0.91 
Ensemble 

(all models) 
19 18 28 26 0.94 95 4 2 6 5 0.82 0.84 

Ensemble 
(finer resolutions) 

18 17 28 25 0.94 95 2 1 4 3 0.84 0.87 

Ensemble 
(coarser resolutions) 

21 19 28 27 0.94 95 5 3 7 6 0.80 0.82  

Fig. 3. Taylor diagrams describing the climatological annual mean of QLH and QSH with related variables including near-surface wind speed (U), and difference in sea 
surface humidity (qs) and near-surface air specific humidity (qa), simulated by the ensemble based on (a) nine AMIP5 models and (b) nine AMIP6 models compared 
to OAFlux. 
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qsat(T, p) = εes(T)/p (9)  

where es is the saturation vapor pressure of water vapor (Pa), p is at-
mospheric pressure (Pa), T is air temperature (K). The es is given by  

where Tt = 273.16 K. 
Similarly, the QSH and the bias coming from bulk parameters can be 

expressed as: 

QSH = ρCp|Va|CHδT (10)  

ΔQSH = ΔSHdynΔHSδT (11)  

ΔSHdyn = ρCpΔ|Va|CHδT (12)  

ΔSHδT = ρCp|Va|CHΔδT (13) 

We also calculate the “bias pattern” in any parameter Q as (QAMIP −

Qobs) − (QAMIP − Qobs) following Găinuşă-Bogdan et al. (2018). The 

removal of mean bias (shown as overbar) over the chosen study area 
helps to reduce uncertainty in the observed mean, in particular, for 
observed latent heat flux that may vary in different flux products (e.g., 
Bourassa et al., 2008; Tomita et al., 2010; Smith et al., 2011; Găinuşă- 
Bogdan et al., 2015). 

The method is applied to both AMIP5 and AMIP6 model output 
compared to OAFlux (AMIPs minus OAFlux). We primarily discuss the 
results for the multi-model ensemble (MME) mean, but also discuss in-
dividual models when necessary. For simplicity, MME based on AMIP5 
and AMIP6 models are referred to as AMIP5 and AMIP6, unless 

Fig. 4. (Left panels) (a) Latent heat flux composite bias pattern for the AMIP5 models and (c) total reconstructed bias pattern based on eq. 4, which is contributed by 
the bias pattern associated with the (e) wind speed, (g) relative humidity, (i) sea-air temperature contrast, and (k) saturation specific humidity. The contours in (c) 
show correlation (CC) between reconstructed total bias and actual bias, and contours in (e,g,i,k) show CC between the bias contributed by individual factors and the 
reconstructed total bias. The contour interval is 0.1. Numbers in bracket indicate the mean of CC in each panel. Right panels are for AMIP6 models. All calculations 
are over tropical oceans (30◦S-30◦N) during 1979–2008. (Unit: W m− 2). 

log(es(T) ) = 10.80(1 − Tt/T) − 5.03log(T/Tt)+ 1.50*10− 4( 1 − 10(− 8.30(T/Tt − 1) ) )+ 0.43*10− 3( 104.77(1− Tt/T) − 1
)
+ 2.79   
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otherwise mentioned. We also use heat loss from the ocean (i.e., heat 
gain for the atmosphere) as positive for both latent and sensible heat 
flux. 

4. Results 

4.1. Climatological mean and seasonal cycle 

The latent heat flux from OAFlux (Fig. 1a) shows off-equatorial 
maxima in the subtropical high where precipitation is lower than 
evaporation (e.g., Lau et al., 2009; Long et al., 2021). The minimum in 
QLH is located along the equatorial eastern and central Pacific due to the 
upwelling of colder water (Zhang and McPhaden, 1995). The observed 
sensible heat flux (Fig. 1d) also shows a pattern similar to latent heat flux 
(Fig. 1a). Both AMIP5 (Figs. 1b,e) and AMIP6 (Figs. 1c,f) capture the 
spatial patterns of QLH and QSH but overestimate both quantities. 
Overall, however, the AMIP6 shows a lower RMSE (Fig. 2) and higher 
correlation coefficient (CC, between model ensemble mean and OAFlux) 
(Table 2) than AMIP5. The bias (in W m− 2) and CC from AMIP6 in QLH 
(19, 0.94) and QSH (4, 0.75) are better than AMIP5 in QLH (21, 0.93) and 
QSH (5, 0.73) over 30◦S-30◦N. For the deep tropics (10◦S-10◦N), AMIP6 
has bias and CC in QLH (18, 0.95) and QSH (1, 0.87) that outperform 
AMIP5 models (Table 3). 

For bulk parameters (Va, qs − qa, and TS − Ta) that constitute the QLH 
and QSH, the AMIP6 is closer to OAFlux than AMIP5, especially over the 
tropical Indian Ocean and western Pacific Ocean (Figs. 1, g-o). In gen-
eral, bulk parameters such as the equatorial 10-m wind speed (Figs. 1 g- 
i) and qs − qa (Figs. 1 j-l), and off-equatorial TS − Ta (Figs. 1 m-o) are 
overestimated. This overestimation of 10-m wind speed and qs − qa seen 
in Fig. 1 is consistent with the overestimation of QLH (Tables 2, 3; Fig. 2) 

in models. For QLH (Figs. 2a,b), the RMSE value peaks in the western 
Arabian Sea and off-equatorial areas of the western Pacific Ocean. This 
pattern is more related to the 10-m wind speed (Figs. 2e,f) than qs − qa, 
indicating the possibility that the 10-m wind speed has a larger impact 
on the RMSE pattern of QLH than qs − qa. For QSH (Figs. 2c,d), the RMSE 
from AMIP6 is clearly lower than that from AMIP5, especially over the 
equatorial Oceans. This is likely because of the lower RMSE in Ts − Ta. 
The performance of the AMIP5 and AMIP6 models is summarized in the 
Taylor diagram (Fig. 3), where we can see that AMIP6 performed better 
than AMIP5, but only slightly. The causes behind the regional distri-
bution of model bias, and its improvement in AMIP6 compared to 
AMIP5, are discussed next. 

4.2. Causes behind the model bias 

4.2.1. Latent heat flux 
The bias patterns in simulated latent heat flux in AMIP5 (Fig. 4a) and 

AMIP6 (Fig. 4b) show overestimation in the off-equatorial Pacific 
Ocean, Arabian sea, Bay of Bengal and southern Indian Ocean. The bias 
is larger in the northwestern Pacific Ocean in AMIP6 than AMIP5, but is 
smaller in the southwestern Pacific. The approximate total bias (based 
on the method described in section 2.3) for latent heat (Figs. 4 c,d) 
shows high correlation (CC = 0.88 for AMIP5, and CC = 0.92 for AMIP6) 
and magnitude as in actual bias (Figs. 4a,b), indicating that the 
decomposition expressed in eq. (4) works, in agreement with earlier 
studies (Hourdin et al., 2015; Găinuşă-Bogdan et al., 2018). Moreover, a 
linear regression analysis shows that the estimated bias in latent heat 
flux based on eq. (4) can capture the dominant variability in the bias in 
latent heat flux in the models (Fig. 5). This provides confidence in 
looking further into the bias coming from individual bulk parameters. 

Fig. 5. Relationship between total estimated bias based on eq. (4) and actual bias in latent heat flux (W m− 2) for (a) AMIP5 and (b) AMIP6 using linear regression 
over tropical oceans (30◦S-30◦N) during 1979–2008. R2 represents square of the Pearson correlation coefficient. 

Table 4 
The RMSE from AMIP5 and AMIP6 model ensemble over 30◦S-30◦N associated with the wind speed (Dyn), relative humidity (RH), sea-air temperature contrast (T), 
and saturation specific humidity (Qsat). Finer (high-res <1.5◦) and coarser resolution (low-res >1.5◦) model results are also shown. (Units: W m− 2).   

QLH QSH 

AMIP5 AMIP6 AMIP5 AMIP6 

all <1.5 >1.5 all <1.5 >1.5 all <1.5 >1.5 all <1.5 >1.5 

Dyn 12 10 13 11 10 12 1 1 1 1 1 1 
RH 9 8 9 9 9 9       
T 5 5 5 5 5 5 5 5 5 4 4 4 
Qsat 3 3 3 2 2 2        

X. Zhou et al.                                                                                                                                                                                                                                    



Atmospheric Research 274 (2022) 106214

8

Most of the bias in latent heat seen in AMIP5 (Fig. 4c) and AMIP6 
(Fig. 4d) comes from the bias in 10-m wind speed (Figs. 4e,f) and RH 
(Figs. 4g,h). Over the equatorial Indo-Pacific warm pool area, the 
pattern in QLH bias is similar to the bias pattern in 10-m wind speed in 
both AMIP5 and AMIP6. The contribution from the air-sea temperature 
contrast pattern (Figs. 4f,l) to the total bias is small in both AMIP5 and 
AMIP6 models compared to that coming from 10-m wind speed and RH 
(Table 4). The bias characteristics in Fig. 4 are consistent with that in 
Găinuşă-Bogdan et al. (2018), who confirmed that bias from 10-m wind 

speed and RH contributes most of the total bias in QLH for AMIP models. 
Moreover, the correlation between the approximated total bias pattern 
(Figs. 4c,d) and that coming from the 10-m wind speed (Figs. 4e,f) and 
RH (Figs. 4g,h) is higher for both AMIP5 and AMIP6 models (Fig. 4). 
AMIP6 shows better performance than AMIP5 with lower RMSE in QLH 
(Table 4). This improvement of the total bias in AMIP6 compared to 
AMIP5 in simulating QLH was driven by an improvement in 10-m wind 
speed and saturation humidity, whereas there was minor improvement 
from RH and T. The dependence of these results on model horizontal 

Fig. 6. (Left panels) (a) Sensible heat flux composite bias pattern for the AMIP5 models and (c) total reconstructed bias pattern based on eq. 11, which is contributed 
by the bias pattern associated with the (e) wind speed, and (g) sea-air temperature contrast. The contours in (c) show correlation (CC) between reconstructed total 
bias and actual bias, and contours in (e,g) show CC between the bias contributed by individual factors and the reconstructed total bias. The contour interval is 0.1. 
Numbers in bracket indicate the mean of CC in each panel. Right panels are for AMIP6 models. All calculations are over tropical oceans (30◦S-30◦N) during 
1979–2008. (Unit: W m− 2). 

Fig. 7. Relationship between total estimated bias based on eq. (11) and actual bias in sensible heat flux (W m− 2) for (a) AMIP5 and (b) AMIP6 using linear regression 
over tropical oceans (30◦S-30◦N) during 1979–2008. R2 represents square of the Pearson correlation coefficient. 
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resolution is discussed in section 3.3. 

4.2.2. Sensible heat flux 
The bias pattern in sensible heat flux (Fig. 6, top) is also well 

approximated using eq. (11) in section 2.3 (Figs. 6c,d) (averaged CC =
0.76 for AMIP5, and CC = 0.82 for AMIP6). Similar to latent heat flux, a 
linear regression analysis for sensible heat flux shows that the estimated 
bias in sensible heat flux based on eq. (11) can capture the dominant 

variability in the bias in sensible heat flux in the models (Fig. 7). The 
somewhat larger mismatch shown in Fig. 7 in the presence of higher 
positive values in actual bias and negative values in estimated bias 
comes from the coastal areas due to land-sea mask issues in the relatively 
coarse-resolution AMIP/OAFlux data. The underestimation in sensible 
heat flux along the equator, and overestimation in the off-equatorial 
oceans, are captured well in both AMIP5 and AMIP6. Air-sea tempera-
ture contrast (Figs. 6g,h) contributes most (with RMSE 5 and 4 W m− 2 

Fig. 8. Sea surface temperature for (a) AMIP5 minus OAFlux, (b) AMIP6 minus OAFlux, and (c) AMIP6 minus AMIP5 during 1979 to 2008. Dotted area indicates 
where the differences are significant at the 95% level based on a two-tailed Student’s t-test. (Unit: K). 

Fig. 9. Taylor diagrams describing the (a) annual mean (b) northern summer (JJA), and (c) northern winter (DJF) bias pattern of QLH and QSH, and the contribution 
of bias coming from the bias in the wind speed (dyn), relative humidity (RH), sea-air temperature contrast (T), and saturation humidity (Qsat). 
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for AMIP5 and AMIP6 in Table 4) to the QSH bias pattern, whereas the 
10-m wind speed (Figs. 6e,f) contributes 1 W m− 2 in both models. The 
bias pattern is also dominated by differences in air-sea temperature 
(Fig. 6g,h), and is slightly more prominent in AMIP6 (CC = 0.85) 
compared to that in AMIP5 (CC = 0.83). 

To further understand the role of air-sea temperature difference, we 
show the spatial structure of SST difference between AMIP5, AMIP6 and 
OAFlux from 1979 to 2008 (Fig. 8). It is not a surprise that the difference 
in SST between AMIP5 and OAFlux (Fig. 8a) and between AMIP6 and 
OAFlux (Fig. 8b) is small. However, the SST from both models is 
generally higher than that from OAFlux, and is expected to produce 
higher latent and sensible heat loss than OAFlux. The SST is also very 
similar between AMIP5 and AMIP6 models (Fig. 8c). For example, the 

difference between AMIP5 and AMIP6 is less than 0.015 K over most 
areas in the tropical oceans. However, the SST is cooler in AMIP6 than in 
AMIP5 models in most part of the tropical oceans. This cooler SST is 
likely responsible for some reduction in sensible and latent heat flux in 
AMIP6 than in AMIP5, thereby reducing the bias in both fluxes in AMIP6 
compared to AMIP5 (Tables 2 and 3). Therefore, the improvement in 
simulated fluxes in AMIP6 is, at least partly due to cooler SST. 

The contribution from bulk parameters for both models towards 
annual and seasonal bias is summarized in Fig. 9. Overall, AMIP6 per-
forms better than AMIP5 as the annual (Fig. 9a) and seasonal means 
(Fig. 9b,c) of heat fluxes and bulk variables are closer to observation. 
The humidity bias contributes more to bias in QLH and the air-sea tem-
perature contrast bias contributes more to bias in QSH. These results are 
consistent with Zhou et al. (2020). 

4.2.3. Annual cycle and hemispheric differences 
Fig. 10 shows the annual cycle of RMSE in QLH and QSH that owes to 

bias from different bulk variables. We found that the RMSE in both flux 
components in AMIP6 is smaller than that in AMIP5 in all variables (Va, 
RH, T and Qsat) in every month. The biggest difference between AMIP5 
and AMIP6 in Fig. 10a is the RMSE from the wind speed during June to 
September, part of which is likely coming from a better simulation of the 
monsoon winds (Rajendran et al., 2021) in AMIP6. The RMSE from 
relative humidity and air-sea temperature difference for both AMIP5 
and AMIP6 models is small. Similarly, for QSH (Fig. 10b), the biggest 
difference between AMIP5 and AMIP6 in RMSE comes from the air-sea 
temperature contrast. These results are summarized in Table 5. The 
mean bias and RMSE of QLH and QSH from AMIP6 are always smaller 
than that from AMIP5 in both hemispheres (not shown). 

Fig. 10. (left) The annual cycle of total 
reconstructed latent heat flux RMSE that 
owes to bias from the wind speed (dyn), 
relative humidity (RH), the sea-air tempera-
ture contrast (T), and saturation humidity 
(Qsat). The solid lines are for AMIP5, and the 
dotted lines are for AMIP6. The shaded area 
around the ensemble means shows the 95% 
confidence limits based on a two-tailed Stu-
dent’s t-test. The right panel is for sensible 
heat flux. Note that the y-axis limits are 
different across the two panels. (Unit: W 
m− 2).   

Table 5 
Annual and seasonal mean bias and RMSE in QLH and QSH for AMIP5 during 1997–2008. The values in parentheses are for AMIP6. Comparison with the OAFlux data 
was made over 30◦S-0◦ for the Southern Hemisphere (SH) and 0◦-30◦N for the Northern Hemisphere (NH). Note that we have put QLH and QSH as positive numbers, 
which represent heat gain to the atmosphere or heat loss from the ocean. Units: W m− 2.   

DJF MAM JJA SON Annual 

Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE 

Northern Hemisphere 
QLH 24(23) 33(30) 22(21) 30(29) 17(16) 29(28) 20(17) 29(28) 21(19) 30(28) 
QSH 4(3) 8(7) 6(5) 10(8) 7(5) 12(10) 5(4) 7(7) 5(4) 9(8) 
Southern Hemisphere 
QLH 19(17) 27(26) 20(17) 28(28) 22(21) 31(30) 21(20) 30(28) 21(19) 29(28) 
QSH 6(5) 11(10) 6(4) 10(8) 5(3) 8(7) 4(3) 8(7) 5(4) 9(8)  

Table 6 
Annual mean of QLH and QSH from AMIP5 and AMIP6 model ensemble and their 
bias compared to the OAFlux (1979–2008) for finer resolution (high-res < 1.5◦) 
and coarser resolution (low-res > 1.5◦) models. Comparison with the OAFlux 
was made over 30◦S-30◦N and 10◦S-10◦N (parentheses). Units: W m− 2.   

Obs AMIP5 AMIP6 AMIP5 
Bias 

AMIP6 Bias 

Comparison with finer resolution models 
QLH 116 (107) 136 (125) 134 (124) 20 (18) 18 (17) 
QSH 7 (5) 10 (7) 9 (6) 3 (2) 2 (1)  

Comparison with coarser resolution models 
QLH 116 (107) 138 (128) 136 (126) 22 (21) 20 (19) 
QSH 7 (5) 13 (10) 12 (8) 6 (5) 5 (3)  
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4.3. Dependence on model resolution and other factors 

To better understand the role of horizontal resolution on the simu-
lated latent and sensible heat flux, we split the AMIP5 and AMIP6 
models into two groups. One group contains models with the horizontal 
resolution finer than 1.5◦ (high-res), and the other group contains 
models with the horizontal resolution coarser than 1.5◦ (low-res). The 
results (Table 6) indicate that the biases in QLH and QSH from high-res 
models from AMIP5 are 20 and 3 W m− 2, respectively. Biases in QLH 
and QSH from low-res models are 22 and 6 W m− 2. The CC between the 
high-res models and OAFlux is higher than the low-res models (Tables 2- 
3). The results are similar for AMIP6. Models with higher resolution 
from AMIP6 perform better than models from AMIP5 for both QLH and 
QSH (Fig. 11) over most of the tropical oceans. It is clear that models with 
finer horizontal resolutions have lower bias and RMSE (Figs. 11a,b,d,e) 
and CC (Figs. 11c,f). These results are consistent with past studies (e.g., 
Demory et al., 2014; Vannière et al., 2018), where an improvement in 
the simulated surface heat flux was found due to an increased resolution 
of the models. 

Apart from the horizontal resolution of the models, the number of 
vertical layers, particularly the number of vertical layers in the planetary 
boundary layer, has been found to influence boundary layer mixing and 
model convection (e.g., Aligo et al., 2009). Unfortunately, the AMIP5 
and AMIP6 models provide data only at 17 and 19 specified levels, 
respectively, and do not provide information on the number of vertical 
layers in the planetary boundary layer or bottom 1000 m. Therefore, the 
possibility that some of the better-performing models may have higher 
number of vertical layers in the planetary boundary layer cannot be 
ruled out. 

There are other factors apart from the model resolution that may also 
influence our results. For example, the estimation of fluxes in OAFlux 
and models may have some differences. First, the monthly values of the 
fluxes in OAFlux are calculated from their daily flux values (OAFlux 
doesn’t have sub-daily data). The monthly AMIP fluxes, on the other 
hand, are produced based on sub-daily flux values from model output. 
So, there are some differences in the way monthly heat fluxes are pro-
duced in the AMIP and OAFlux. However, this does not affect our 
conclusion since a small change in OAFlux will not change our results 
regarding the relative performance of AMIP5 and AMIP6 compared to 
OAFlux. Second, the fluxes in OAFlux and AMIP datasets are based on 
instantaneous values of bulk variables unlike some other sophisticated 

models such as the Weather Research and Forecasting (WRF) model, 
where fluxes are calculated at each model time-step and the time- 
integrated values of the fluxes can be taken as the model output (e.g., 
Brownlee et al., 2017; Ray et al., 2021). Therefore, our model-data 
comparison, although consistent, may also introduce some un-
certainties. Third, the results related to mean bias will not change if we 
use daily flux values instead of monthly flux values since monthly values 
are simply based on monthly average of daily values. There is, however, 
one advantage in using monthly OAFlux data compared to daily data, 
since the biases in the monthly OAFlux data are much smaller than the 
daily data (Yu et al., 2008; Pinker et al., 2014). Therefore, the biases in 
OAFlux are expected to be even smaller for seasonal and annual means. 

5. Conclusion 

This study evaluates the simulated surface latent (QLH) and sensible 
(QSH) heat fluxes over the tropical oceans over 30◦S − 30 ◦ N during a 30 
yr period (1979–2008) from nine contemporary AGCMs participating in 
the AMIP5 and AMIP6. It is quite rare to find studies related to surface 
flux evaluation in atmospheric models, even though understanding the 
performance of atmospheric models is critical to understanding the 
performance of their coupled counterparts. The AMIP models used here 
had different resolutions, but they had the same resolutions in two 
versions of the AMIP simulations (i.e., AMIP5 and AMIP6). This allows 
us to quantify and understand any improvement in the simulated QLH 
and QSH in AMIP6 compared to AMIP5 that is independent of model 
resolution. The main conclusions can be summarized as follows:  

(1) Both AMIP5 and AMIP6 model ensembles overestimate QLH and 
QSH (Tables 2-3), especially over the off-equatorial west Pacific 
and the southeastern Indian Ocean, the east coast of Australia, 
and the north Indian Ocean (Fig. 2). The performance of AMIP6 
was better than AMIP5. However, systematic spatial biases 
remained, which led to only incremental improvements in the 
simulated fluxes. For example, the RMSE and mean bias in QLH 
are 30 and 21 W m− 2 in AMIP5 and 28 and 19 W m− 2 in AMIP6. 
This represents a reduction in QLH bias by 10% and RMSE by 7%. 
For QSH, the improvements represent a reduction in QSH bias by 
25% and RMSE by 13%. 

(2) Each AMIP6 model performed better than their AMIP5 counter-
parts with the same horizontal resolutions (Tables 2-3). This is 

Fig. 11. (top) (a) Bias (W m− 2), (b) RMSE (W m− 2), and (c) CC for QLH in AMIP5 (blue) and AMIP6 (orange) models with finer horizontal resolution (<1.5◦grid 
spacing) and coarser horizontal resolution (>1.5◦grid spacing). (bottom) (d-f) are for QSH. The top and bottom of the black bars show the highest and lowest values 
from the models. Note that the y-axis limits are different across panels. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 
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rather remarkable, and is partly due to better boundary condi-
tions (e.g., sea surface temperature as shown in Fig. 8) (Eyring 
et al., 2016) and model physics in AMIP6 than AMIP5. Earlier 
studies related to flux evaluation (e.g., Cao et al., 2015; Bentamy 
et al., 2017; Găinuşă-Bogdan et al., 2018) could not conclude 
whether the improvement was due to increased resolution, model 
physics or model boundary conditions. 

Although we compared the models with same horizontal res-
olutions, four AMIP6 models have higher vertical resolutions 
compared with AMIP5 (Table 1). These four AMIP6 models with 
higher vertical resolution performed similarly to the rest of the 
AMIP6 models, indicating that the increased vertical resolution 
was not instrumental in better performance of the AMIP6 models.  

(3) To obtain insights into the mechanisms responsible for the 
improvement in AMIP6 compared to AMIP5, we examined the 
contribution of bias in QLH and QSH coming from 10-m wind 
speed, RH, air-sea temperature contrast, and saturation specific 
humidity. Most QLH bias is due to 10-m wind speed and RH 
(Table 4, Fig. 4), and most QSH bias is due to air-sea temperature 
difference (Table 4, Fig. 6). These results are consistent with 
Găinuşă-Bogdan et al. (2018). The improvement in QLH in AMIP6 
is due to a better simulation of the 10-m wind speed and satu-
ration specific humidity (Table 4, Fig. 4). Likewise, the 
improvement in QSH in AMIP6 is due to a better simulation of the 
air-sea temperature difference (Table 4, Fig. 6).  

(4) Models with finer horizontal resolution generally performed 
better than those with coarser resolution (Table 6, Fig. 11). This 
result is consistent with previous studies (e.g., Demory et al., 
2014; Vannière et al., 2018). 

Overall, the AMIP6 models showed a small but systematic 
improvement in simulating the surface latent and sensible heat fluxes 
compared to AMIP5 models of same resolutions, although systematic 
spatial biases remained. It would be interesting to explore the perfor-
mance of coupled models with same resolutions from CMIP5 and CMIP6. 
Such an initiative will be undertaken in the future. 
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