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Madden-Julian oscillation influences United States springtime
tornado and hail frequency
Douglas E. Miller 1✉, Vittorio A. Gensini 1 and Bradford S. Barrett 2

The Madden–Julian Oscillation (MJO) is the dominant mode of intraseasonal variability in the tropics and has a documented
influence on extratropical extreme weather through modulation of synoptic atmospheric conditions. MJO phase has been
correlated with anomalous tornado and severe hail frequency in the United States (US). However, the robustness of this relationship
is unsettled, and the variability of physical pathways to modulation is poorly understood, despite the socioeconomic impacts that
tornadoes and hail evoke. We approached this problem using pentad MJO indices and practically perfect severe weather hindcasts.
MJO lifecycles were cataloged and clustered to document variability and potential pathways to enhanced subseasonal tornado and
hail predictability. Statistically significant increases in US tornado and hail probabilities were documented 3–4 weeks following the
period of the strongest upper-level divergence for the 53 active MJO events that propagated past the Maritime continent,
contrasting with the 47 MJO events that experienced the barrier effect, during boreal spring 1979–2019. The 53 MJO events that
propagated past the Maritime continent revealed three prevailing MJO evolutions—each containing unique pathways and
modulation of US tornado and hail frequency—advancing our knowledge and capability to anticipate these hazards at extended
lead times.
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INTRODUCTION
The Madden–Julian Oscillation1 (MJO) has recently been exploited
as a source of skillful subseasonal predictability for United States
(US) severe convective storms (SCSs; tornadoes, severe hail, and
damaging convective wind gusts)2–4. SCSs are a perennial source
of insured losses totaling $10B annually5 in the US, and their
extended-range prediction remains an area of significant stake-
holder interest6. The MJO is characterized as a meso-α cluster of
deep convection in the Indian Ocean that migrates eastward into
the Indo-Pacific warm pool with a timescale between 30 and
90 days7,8. Diabatic latent heating associated with extensive MJO
convection can generate Rossby waves9–14, as the divergent
tropopause-level flow advects potential vorticity poleward and
interacts with mid-latitude westerly jets15–17. MJO-induced wave
trains often propagate poleward and eastward toward North
America, altering the atmospheric circulation and associated
probability and frequency of extreme temperatures and precipita-
tion18–23, atmospheric rivers24,25, snowstorms26,27, hurricanes28,29,
and SCSs30–33. In short, increasing our understanding of the MJO’s
influence and variability on extratropical extreme weather is vital
to enhancing skillful subseasonal forecasts34.
The MJO can be objectively characterized using a myriad of

instantaneous or time-filtered tropical kinematic and thermody-
namic quantities. The Real-time Multivariate MJO35 (RMM) index
uses meridional averages of outgoing longwave radiation (OLR)—
along with 850-hPa and 200-hPa tropical zonal winds—to classify
the MJO into one of eight phases and determine relative strength.
The OLR-based MJO index36 (OMI) aims to capture deep
convection, derived by projecting 20–96 day filtered OLR
anomalies onto the two leading spatial EOF patterns. Previous
studies investigated the relationships between these MJO indices
and US tornado and hail occurrence. For example, April tornado
days were more likely during MJO RMM phases 6 and 8, whereas

May tornado days were more likely during MJO RMM phases 5 and
830. Violent tornado outbreaks in the boreal spring were more
than twice as likely during MJO RMM phase 231. A comprehensive
analysis examining OMI and RMM noted enhanced frequency of
tornado days during phase 2 of the RMM, whereas OMI produced
non-statistically significant results, highlighting the sensitivity of
methods37. Strong instantaneous correlations between days with
anomalous hail frequency and RMM MJO phase have also been
noted32.
In addition, the MJO has recently been leveraged to highlight

potential SCS “forecasts of opportunity”2,3. Specifically, a statisti-
cally significant increase in central Great Plains tornado and hail
frequency was evident 3–4 weeks following MJO OMI phase 8 and
several weeks following phases 1 and 22. A research team used
the MJO in a pseudo-operational setting during April–May 2019 to
anticipate an above-average tornado-frequency period 3–4 weeks
in advance, which verified with tornado counts more than triple
the expected 30-year average4. The onset of the significant MJO
event was immediately followed by a period of above-average
Earth-relative atmospheric angular momentum (AAM), subsequent
breakdown of a strong zonally oriented north-Pacific jet stream,
retrogression of the Rossby wave pattern over the conterminous
US, and a favorable synoptic-scale atmospheric regime for
SCSs3,38.
Many studies examined the concurrent relationship between

MJO phase and SCS frequency, but have omitted physical
characteristics (e.g., strength, propagation speed) of individual
MJO events that may have varied time-lagged responses. Here, we
examine the MJO–SCS connection in the context of MJO lifecycle
components and show significant modulations of tornado and
hail probabilities following the period of the strongest MJO upper-
level divergence. We show distinct pathways to SCS environment
and event modulation that are dependent on MJO flavor (i.e.,
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location, strength, and propagation speed). This work significantly
advances our understanding of the boreal spring MJO–SCS
relationship in the US, which is vital for improved subseasonal
forecasts.

RESULTS AND DISCUSSION
An example of the MJO–SCS relationship during April–May
2019
We begin by presenting an example of a strong MJO event during
April–May 2019, which resulted in a skillful subseasonal forecast of
above-average US SCS frequency3 (Fig. 1). The MJO event began
in late April and continued to strengthen/propagate across the
western Pacific through mid-May. This was reflected by periods of
negative pentad anomalies (negative velocity potential at 200 hPa;
χ200), indicative of upper-level divergence associated with deep
convection. The 3–4 week period following the peak divergence
during the MJO initiation recorded 14 days with tornado and hail
practically perfect hindcast (PPH) risk at enhanced or greater levels
across the US (Fig. 1a).
Northern Hemisphere AAM peaked near +1σ on 3 May 2019,

coinciding with the day of the minimum MJO pentad index, or
maximum upper-level divergence (3 May 2019), and decreased

over the next four weeks (Fig. 1b). Such AAM increases are a
response (via conservation of angular momentum) to poleward
momentum flux from the tropics associated with the MJO
convection39. Statistically significant peaks in PPH-enhanced risk
grid points and summed Significant Tornado Parameter (STP) and
Supercell Composite Parameter (SCP) were evident following the
maximum-to-minimum transition of AAM through 31 May 2019
(Fig. 1b). Essentially, a favorable synoptic weather regime (western
US upper-level thermal trough and downstream thermal ridge)
remained in place from 17 to 28 May 20193, which increased the
likelihood of positive PPH anomalies.

Modulation of hail and tornado frequency following minimum
pentad index
High-frequency periods of SCSs following strong MJO events—like
that observed during 2019—are evident from year-to-year. We
examined each active MJO event during MAMJ from 1979 to 2019
along with its influence on tornado and hail PPH and the
background convective environment (i.e., SCP and STP). An active
MJO is identified if the minimum pentad index was ≤−0.5. Date
and location of the minimum pentad indices for each active MJO
event were cataloged, representing the point of minimum χ200
(or maximum 200-hPa divergence). This minimum is our proxy for

Fig. 1 MJO pentad indices, Northern Hemisphere AAM, and tornado/hail modulation during 2019. a Hovmöller diagram of the 10 pentad
MJO indices for April–May 2019 (shading) and marked occurrences of US practically perfect enhanced risk days (black bars). Green (brown)
shading of the negative (positive) pentad indices represents 200-hPa divergence (convergence). Panel (b) indicates the standardized
anomalies of northern hemisphere AAM (orange), number of practically perfect enhanced risk (PPH TOR >10% and/or PPH HAIL >30%) grid
points (blue), and US accumulated sum of STP+ SCP (red). Circles indicate significant anomalies using a 1000-iteration bootstrap test. Black
horizontal line indicates the date of the first minimum pentad index, i.e., maximum upper-level divergence.
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the peak lifecycle strength of MJO convection. To examine
modulation of SCS frequency following MJO events, we compos-
ited probability anomalies of PPH-enhanced risk (TOR PPH ≥10%
and/or HAIL PPH ≥30%) occurrence within a centered 3-day
window for 28 days following the day of minimum pentad index
(Fig. 2). One hundred active MJO events were recorded, which
were further separated into two groups: 53 events that
propagated across the Maritime Continent (MC) and 47 events
that did not (i.e., which remained in the Indian Ocean, IO). The IO
MJO composites were characterized by an ongoing MJO event
that became active near the dateline and the minimum pentad
indices occurred at 60°E, with conclusion of the events within the
next 12 days (Fig. 2a). Statistically significant increases in the
probability of eastern US (E) PPH-enhanced risk days peaked at
days 4–5 following the minimum pentad index, with subsequent
decreases in US probabilities noted at days 17–19 (Fig. 2b). IO MJO
events progressed from OMI phase 8/1 on the day of minimum
pentad index through phase 6 28 days later (Fig. 2c). This contrasts
with previous research2 that noted an increase in Great Plains
tornado occurrence 3–4 weeks after OMI phase 8. However, these
results are only valid for MJO events that reach peak amplitude in
the IO and experience the MC barrier effect40. Phase-space
diagrams involving the RMM35 index were similar to the OMI
phase-space diagrams throughout this study.
On average, the 53 MJO events that propagated past the

Maritime Continent and into the Pacific (MT/PAC) strengthened
while traveling through the Indo-Pacific warm pool (Fig. 2d). OMI
phase space progressed through phases 4–1 for these events (Fig.
2f). Statistically significant increases in Northern Hemisphere AAM
occurred at days 6–14 following the minimum pentad index,
which coincided with a statistically significant decrease in the
probability of US PPH-enhanced risk days, followed by statistically
significant increases in Great Plains (GP) probabilities at days
19–21 and eastern US probabilities at days 22–25 (Fig. 2e).

Although the focus here is PPH-enhanced risks, similar modula-
tions occurred for the probability of PPH moderate-risk days (TOR
PPH ≥30% and/or HAIL PPH ≥60%; Supplementary Fig. 1).
We continue focus on the MT/PAC MJO events, as these were

associated with a more robust modulation of tornado and hail
frequency than the IO events. Perhaps most importantly, MT/PAC
MJO events serve as potential forecasts of opportunity, given the
temporal evolution of SCS probabilities. Composite anomalies of
3-day-averaged 500-hPa geopotential height (Z500), 3-day sums
of accumulated STP and SCP, and the probability of PPH-
enhanced risk occurrence within 3-day windows were examined
(Fig. 3) to help physically explain the increased tornado and hail
probabilities following the minimum pentad index in Fig. 2. A
prominent Rossby wave train was present at day 14 following the
minimum pentad index, spanning from the tropical–central Pacific
to the western US, characterized by a statistically significant
negative Z500 anomaly centered over the central Pacific (Fig. 3d).
This pattern was also present at day 7 (although not as organized
as day 14, Fig. 3a), with positive Z500 anomalies over the eastern
US that persisted to day 14. The western US negative Z500
anomalies at day 14 transitioned through the central US at day 21,
where statistically significant increases in STP and SCP and the
probability of enhanced risk days rose over the southern Great
Plains and southeast US (Fig. 3 h, i). Appreciable increases in the
probability of PPH-enhanced risk days were greater when
examining only strong MJO events (pentad index amplitude
≥1.0; Supplementary Fig. 2c), with a composite Z500 cyclone
centered over Oklahoma and increased probabilities to the lee of
the Z500 thermal trough axis in the expected surface cyclone
“warm sector”. The Z500 thermal trough migrated further east
through day 28—decreasing PPH probabilities over the eastern US
relative to day 21—as differential cold-air and anticyclonic
vorticity advection forced subsidence, offshore surface winds,

Fig. 2 IO and MT/PAC MJO pentad evolution and the resulting PPH modulation. a Hovmöller diagram of the 10 pentad MJO indices for
14 days prior to 14 days after the day of minimum pentad index for IO MJO events. Green (brown) shading of the negative (positive) pentad
indices represents 200-hPa divergence (convergence). b Enhanced risk-day probability anomalies (%) for the US (pink), eastern US (green), and
Great Plains (yellow), and standardized northern hemisphere AAM anomalies (black) following the date of minimum pentad index for IO MJO
events. Statistically significant anomalies (bootstrapped p-values < 0.05) are shown by colored circles. c OMI phase-space kernel-density
estimates (gray shading/contours, 0.03–0.21 every 0.03) and the mean event path of evolution from day 0 to 28 following the day of minimum
pentad index for IO MJO events. Color shading represents US-enhanced risk-probability anomalies (%, pink curve in panel [b]). White numbers
list the days following the minimum pentad index. Panels (d–f) as in (a–c), but for MT/PAC MJO events.
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and unfavorable conditions for SCSs (Fig. 3j–l). The total evolution
can be seen in Supplementary Movie 1.

Different MJO flavors influence hail and tornado probabilities
MJO events differ by strength and propagation speed41–45, which
can lead to modulation of the US synoptic weather pattern
through different pathways46. To investigate this diversity, the 53
MT/PAC events were decomposed into three distinct MJO pentad
evolutions. The weak (–1.0 < pentad indices ≤–0.5) MJO events
were labeled as cluster 1 (13 events), while clusters 2 and 3 were
derived from k-means clustering containing 18 (cluster 2) and 22
(cluster 3) MJO events, respectively. Cluster-1 (Fig. 4a) MJO events
represented shorter, weaker MJO events compared with clusters 2
and 3, as the cluster-1 composite showed an active, albeit weak
MJO (pentad index amplitude <1) from day –3 to day +10. OMI
phase space associated with cluster-1 events also displayed weak
MJO events as noted by total amplitude values <1 (Fig. 4c).
Cluster-2 events portrayed an ongoing MJO, with the greatest
magnitudes of negative MJO pentad indices located between 160°
E and 80°W. This cluster is representative of a quickly propagating

MJO (≈21°lon/day), as pentad indices ≤−1 extended to the prime
meridian by day +8 (Fig. 4d). On average, cluster-2 OMI phase
space spanned from phase 4 to phase 2 over the 28-day period
(Fig. 4f). Cluster-3 events were characterized by an active MJO
similar to cluster-2 events (Fig. 4g). However, the largest
magnitudes of these events were confined between 120°E and
140°E, and propagation was slower than cluster-2 (≈13.5°lon/day),
with the maximum convection reaching 240°E eight days
following the minimum pentad index. Cluster-3 OMI phase space
indicated an active MJO starting in phase 3 at day 0 and
progressed to phase 8 by day 28 (Fig. 4i).
To showcase the impacts of different MJO clusters on SCS

frequency, we composited probability anomalies of PPH enhanced
risk day occurrence and AAM for 28 days following the day of
minimum pentad index (following the method of Fig. 2). Weaker
MJO events (cluster 1) had no significant impact on AAM (on
average) following the minimum pentad index, or maximum
upper-level divergence, until day 20, which then coincided with a
statistically significant increase in the probability of US PPH ENH
risks from days 22 to 28 (Fig. 4b). This increase is attributed to a
substantial western US Z500 anticyclone evident at day 14 (a

Fig. 3 Composite anomalies following day of minimum pentad index for MT/PAC MJO events. Three-day averaged Z500 standardized
anomalies centered on (a) day 7, (d) day 14, (g) day 21, and (j) day 28 following the minimum pentad index day. Panels (b, e, h, k) follow
(a, d, g, j), but for standardized anomalies of STP and SCP (shading). Panels (c, f, i, l) follow (a, d, g, j), but for anomalies of enhanced risk-day
probability (%, shading). Black dots represent statistically significant anomalies at the 95% confidence level.
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pattern which is unfavorable for widespread SCS activity) that
migrated northeast into eastern Canada by day 21 (Supplemen-
tary Fig. 3d, g). The western US trough–eastern US ridge pattern,
supporting southerly surface flow from the Gulf of Mexico,
increased the probability of SCS occurrence throughout the Great
Plains (Supplementary Fig. 3g) at day 21 following the minimum
pentad index for cluster-1 events. Cluster-2 MJO events experi-
enced statistically significant increases in the probability of ENH
risk occurrence over the eastern US at days 23–24 following the
minimum pentad index (Fig. 4e). A composite Z500 anticyclone
was present over the western US with eastern US troughing at day
21, and increased probabilities of PPH were noted over the
southeast US just east of the 500-hPa thermal trough axis
(Supplementary Fig. 3h). MJO events associated with cluster-3
exhibited significant increases in AAM during days 3–12 following
the minimum pentad index, and increases in the probability of
ENH risk days were evident days 16–22 for the GP and days 20–25
for the eastern US (Fig. 4h). A composite eastern US Z500 thermal
ridge was evident at day 14, with increased SCS probabilities
throughout the Great Plains (Supplementary Fig. 3f). In fact, the
anticyclone first developed around day 10 and persisted over the
eastern US, until migrating southeast into day 21 (Supplementary
Movie 2). The most robust signal was derived at day 21, with a
composite anticyclone centered over south Florida with a SW-to-
NE tilt. Onshore surface flow associated with the anticyclonic

circulation supported increased probabilities of SCS frequency
focused on the Ark-La-Tex region (Supplementary Fig. 3i).

Implications for monitoring and prediction
Our results highlight increased understanding of MJO-induced
variability associated with US springtime tornado and hail events,
which is important for their subseasonal prediction. The timing of
peak tornado and hail-frequency anomalies was unique and
dependent on MJO type, strength, and propagation speed. Few
statistically significant increases in the probability of US PPH ENH
risk days occurred following MJO events that experienced the
barrier effect (IO), while weak MT/PAC events (cluster 1)
experienced increases in US PPH ENH risk probabilities during
the week-4 period. The late March into early April 2011 MJO event
(and associated high tornado and hail-frequency period of mid-to-
late April 201147) was classified as cluster 3 (Supplementary Fig. 4),
characteristic of increased ENH risk probabilities during weeks 3–4
following the minimum pentad index. The previously discussed
high-frequency tornado and hail period of late May 20193 was also
labeled cluster 3. In that event, the minimum pentad index
occurred on 3 May 2019. By 20 May, a quasi-stationary western US
mid-level thermal trough was established (similar to patterns in
Supplementary Fig. 3), which helped force favorable synoptic-
scale conditions for hailstorms and tornadoes.
The main caveat associated with our (and other similar) analysis

is sample size. We are limited by the number of years in the study

Fig. 4 MJO pentad evolution and the resulting PPH modulation for the three clusters of MT/PAC events. Panels (a, b, c) as Fig. 2, but for
cluster-1 MJO events. Panels (d, e, f) as panels (a, b, c) but for cluster-2 MJO events. Panels (g, h, i) as panels (a, b, c) but for cluster-3 MJO
events.
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and the temporal frequency at which MJO events cycle in the
boreal spring (e.g., if MJO events were examined over thousands
of years, it would be likely that more than three clusters would
emerge). Future work may focus on the issue of sample size by
utilizing climate-model simulations, allowing for more robust
results and avenues to explore the impacts of additional modes of
climate variability on the MJO and SCS occurrence. Nevertheless,
our work highlights pathways forward for better prediction and
understanding of how the MJO clusters influence US tornado and
hail frequency. This could be especially beneficial for subseasonal
SCS forecasts that utilize a hybrid dynamical/statistical approach48,
as such forecasts could be probability-weighted by observed MJO
characteristics.

METHODS
MJO indices
Pentad MJO indices were obtained from the NOAA Climate Prediction
Center and represent the negative projection of 200-hPa velocity-potential
(χ200) anomalies onto the ten time-lagged patterns of the first extended
empirical orthogonal function (EEOF) of pentad χ200 anomalies49,50.
Pentad indices are available at 20°E, 70°E, 80°E, 100°E, 120°E, 140°E, 160°E,
120°W, 40°W, and 10°W, and can be viewed graphically to examine
evolution of enhanced and suppressed tropical 200-hPa divergence (e.g.,
Fig. 1). We identified active MJO events from 1979 to 2019 using pentad
indices during the extended boreal spring season (MAMJ), as this
corresponds to the annual climatological peak in tornado and hail
frequency51,52. An active MJO event was defined where pentad indices
were ≤–0.5. Date and location of the minimum pentad indices for each
MJO event were cataloged, representing the spatiotemporal maximum
200-hPa divergence, or maximum convection, for each event. The
minimum pentad index must be at or west of 160°E. MJO events were
classified by the barrier effect40 (i.e., propagated across the Maritime
Continent or not). For robustness, we also compared MJO pentad indices
to the OLR-based MJO index36 (OMI). OMI phase spaces are shown in
Figs. 2 and 4.

Tornado and hail data
Tornado and hail practically perfect hindcasts (PPH)53,54 were used as a
“target” for the MJO pentad data. PPH represents a Gaussian-smoothed
statistical point process of event probabilities based on observed tornado
and hail reports. PPH probabilities were constructed to resemble what a
perfect Storm Prediction Center (SPC) SCS outlook may have looked like.
PPH data were calculated on the National Center for Environmental
Predictions’s 211 Lambert-conformal grid (≈80-km horizontal grid spacing)
following previous work54. The probability of a PPH “enhanced; ENH”
(tornado PPH ≥10% and/or hail PPH ≥30%) day centered within a 3-day
window was calculated for the US, defined as all US grid points east of 106°
W. Two additional regions were analyzed: the Great Plains (GP: 106–91°W)
and the eastern US (E: east of 91°W). We also examined PPH “moderate;
MDT” (tornado PPH ≥30% and/or hail PPH ≥60%) risk days. After
calculating the probability of PPH ENH risk occurrence, the climatological
probabilities were removed in Figs. 2 and 4. The climatology was
calculated as the probability of a PPH risk day to occur within a 3-day
window during the 28 days following the minimum pentad index over the
41-year period (1979–2019). For example, the climatological probability
was calculated each day over the 28-day period 3–31 May 1979–2019,
when examining the 3 May 2019 MJO event.

Reanalyses
To supplement PPH observations, atmospheric conditions conducive for
tornadoes and hail were assessed from the North American Regional
Reanalysis (NARR)55. The significant tornado parameter (STP) and supercell
composite parameter (SCP) were calculated56 using 3-hourly NARR fields
and summed from 1200 to 1200 UTC (following previous work57,58) to
capture the typical diurnal cycle of SCS frequency. NARR was selected due
to its documented ability to adequately represent important atmospheric
ingredients related to SCSs59,60.
To highlight planetary and synoptic-scale features, 1200–1200 UTC daily

averaged (from the native hourly interval) 500-hPa geopotential height

(Z500) was obtained from the ECMWF ERA5 reanalysis61. Standardized
anomalies were calculated using the 1979–2019 climatology.
Earth-relative atmospheric angular momentum (AAM) was calculated,

given its documented relationship to MAMJ tornado and hail frequency in
the US38,62. Daily (1200–1200 UTC) mean AAM values were calculated from
6-hourly intervals using zonal wind and surface pressure from ERA5’s 137
native vertical hybrid-sigma levels61. Earth-relative AAM was derived
following63:

AAM ¼ a3

g

Z π
2

�π
2

Z 2π

0

Z p

po

cos2ϕdϕdλudp (1)

where a is Earth’s radius, g is the gravitational constant, ϕ is latitude, λ is
longitude, u is zonal wind speed, and p is pressure. Here, we limit the zonal
integral to only the Northern Hemisphere (i.e., 0 � ϕ � π

2), given our
interest on the impact of SCSs in the US.

Decomposition of MJO events
To separate the MJO events into subgroups, cluster 1 first contains the 13
weaker MJO events (–1.0 <minimum pentad index ≤–0.5). Clusters 2 and 3
are derived using k-means clustering following Lloyd’s algorithm64. The
algorithm was applied to the pentad MJO indices from 14 days prior to
14 days following the day of the minimum pentad index (i.e., maximum
divergence).

Statistical significance
Composite evolutions of PPH-enhanced risk-day probabilities were
constructed following minimum pentad indices. A 1000-iteration
bootstrap test was performed to test the significance of the daily
(1200–1200 UTC) anomalies of PPH probabilities following the
minimum pentad index (Figs. 2 and 4). The significance of Z500
anomalies was tested using a two-tailed Student’s t-test, with the null
hypothesis that the anomalies do not differ from zero. A
Mann–Whitney U-test for the medians was performed on the anomalies
of STP/SCP and PPH as the distributions were non-Gaussian. The results
were considered significant if the p-value was less than 0.05 (95%
confidence level).

DATA AVAILABILITY
NARR reanalysis data are available through the NCAR Research Data Archive (RDA;
https://rda.ucar.edu/). ERA5 data were downloaded from the European Centre for
Medium-Range Weather Forecasts (ECMWF), Copernicus Climate Change Service
(C3S) available at https://cds.climate.copernicus.eu/. The CPC Pentad MJO indices are
available online at https://www.cpc.ncep.noaa.gov/products/precip/CWlink/
daily_mjo_index/pentad.html. PPH data are available online at https://atlas.niu.edu/
pperfect/BAMS/.

CODE AVAILABILITY
The source codes for the analysis of this study are available from the corresponding
author upon reasonable request.
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