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Abstract. The northern Bay of Bengal (BoB) has been traditionally understudied and under-
sampled. Satellite and modeling products could compensate for the scarcity of in situ measure-
ments, but this requires evaluating the accuracy of satellite and modeling products first. We
present a comparison of sea surface temperature (SST) and sea surface salinity (SSS) products
(satellite and model output) with 46 in situ observations in the northern BoB. We used satellite
and modeled SST (daily) and SSS (weekly and daily) in this comparison. The results are as
follows. (1) Both model and satellite-derived SSTs agreed well with in situ observations and with
each other, with small biases (<1°C) and large correlation coefficients (r > 0.77). (2) Neither
model nor satellite SSSs agreed well with in situ observations (biases > 0.5 PSU, r < 0.54).
(3) Calculations of the d-index support the argument that model and satellite SSTs agreed well
with in situ observations (d-index values of 0.68 and 0.65, respectively), while the model and
satellite SSSs did not agree well with observations (d-index values of 0.31 and 0.40, respec-
tively). The results suggest that additional work is needed to improve both model prediction
and satellite retrieval algorithms for SSS in the northern BoB. © The Authors. Published by
SPIE under a Creative Commons Attribution 4.0 International License. Distribution or reproduction
of this work in whole or in part requires full attribution of the original publication, including its DOI.
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1 Introduction

Accurate and timely remote measurements of ocean temperature and salinity are essential for
numerical prediction models1 to forecast the ocean and atmosphere dynamics. Obtaining precise
global sea surface temperature (SST) estimates has been the focus of the study of many groups
for the last few decades. In a classical study, Brown et al.2 analyzed calibration methods of the
U.S. National Oceanographic and Atmospheric Administration (NOAA) Advanced Very High
Resolution Radiometer (AVHRR), by deriving accurate SST fields from satellite infrared (IR)
observations, based on vacuum test datasets. Similarly, Kumar et al.3 explicitly examined the
global Pathfinder algorithm’s performance in regional conditions, by comparing satellite data
to buoy data. They concluded that a variation of ∼5°C existed between these two sources.
Recently, a saildrone instrument was used by Vazquez-Cuervo et al.4 to study SST retrievals.
Among the six different Group for High Resolution Sea Surface Temperature (GHRSST) Level-
4 SST and Level-2 SSS products, they found good agreement with satellite-derived SST and less
correlation to the SSS datasets.
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Modern numerical ocean models capitalize on remote observations of temperature and salin-
ity to help us understand both large- and small-scale processes in the Indian Ocean (IO). For
example, Jensen et al.5 used the global Hybrid Coordinate Ocean Model and the Regional Ocean
Modeling System (ROMS) to illustrate exchanges of salinity between the Bay of Bengal (BoB)
and the IO. Moreover, Benshila et al.6 used the Nucleus for European Modeling of the Ocean
(NEMO) system to provide one of the first a high-resolution structures of salinity in the BoB.
Finally, important details on temperature inversions in the BoB were provided by Babu and Rao7

using the Princeton Ocean Model. These examples show how useful it is for researchers to use
model output to evaluate physical, chemical, and biological parameters in the IO.

Recent improvements in numerical modeling8 and remote sensing (RS) systems include
greater horizontal and vertical resolution and the introduction of new instruments, theories, and
methodologies. Moreover, continuous monitoring of SST and sea surface salinity (SSS) is now
possible over large spatial and temporal scales.9 Even on days when the satellite measurements
contain missing values, other available products, including aerial and drone photography, buoy
measurements, conductivity, temperature, and depth (CTD) profiles, and water sample analyses,
can be used to fill the gaps.10 Indeed, high-resolution satellite-based observations of oceano-
graphic fields,11 along with their assimilation into numerical ocean prediction models,12 enable
advances in research and operational forecasting in marine sciences.13 Both active and passive
satellite scanning strategies can be utilized to acquire a variety of oceanic parameters, including
suspended particulate matter (SPM),14 sea surface roughness,15 and wave height.16 These sat-
ellite-derived products are very essential to the modeling study.

One way to evaluate numerical prediction model performance is to compare model output to
satellite products.17 The AVHRR product of the NOAA is one such scanning system that has
been used since 1981 to determine ocean SST in near real time.18 However, the use of satellite-
derived SST has some associated caveats. Satellites measure the skin SST (at depth of ∼10 to
20 μm), which is colder than the bulk SST (of the topmost few meters) by 0.1°C to 0.5°C.19 In
addition, it depends on whether the satellite is measuring emitted radiation in the IR or in the
visible as an approximate solution to the radiative transfer equation. 20 Furthermore, there are
some satellites (GHRSST) those measure at night and others measure during the beginning of the
day initial when the heat buildup from absorption of solar radiation surpasses the heat loss at the
sea surface (also known as foundation SST). This type of satellite-derived estimates with a diur-
nal correction provide SSTwith negligible (<0.05°C) biases.21 Although there are different meth-
ods to estimate SST, scientists are consistently introducing new techniques to measure other
parameters, such as SSS, from the space.

Remotely sensed observations of SSS are more recent and they are not as developed as SST.
However, two platforms were recently launched: the Soil Moisture and Ocean Salinity (SMOS)
satellite in 200922 and the launch of the joint U.S./Argentinian Aquarius/Satélite de Aplicaciones
Científicas (SAC)-D satellite in 2011. Although Aquarius came to halt in 2015, the SMOS plat-
form is still engaged in routine monitoring of SSS.

Widespread usage of model output and satellite observations leads to questions regarding
their accuracy. One way to measure that accuracy is to compare RS data and model output
to in situ observations, particularly for continental shelf regions where those observations are
more common. However, in situ observations themselves have uncertainty,23 and that possible
error should be considered when making any comparisons. Nevertheless, a comparison of both
model output and RS observations with in situ observations on similar spatial and temporal
scales can give an estimate of the accuracy of both model output and RS data. This is particularly
important in enclosed regions such as the BoB that feature high to extreme sediment inputs and
freshwater discharges that can complicate satellite retrieval algorithms.

Noteworthy differences between satellite SST (hereafter abbreviated as SSTsat) products and
in situ measurements of coastal water temperature (hereafter abbreviated as SSTin) have been
noted in previous continental shelf studies in other parts of the world. For example, Castillo and
Lima24 found negative biases between in situ readings and Moderate Resolution Imaging
Spectroradiometer (MODIS) SSTsat products in reef-dominated coastal waters in southern
Belize. Additionally, large biases, up to 6°C, between in situ and RS measurements were detected
in 87 sites spanning the South African coastline. Although smaller in magnitude, Wu et al.25

found 1°C root mean square error (RMSE) for the Atlantic Zone Monitoring Program’s
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ship-based SSTin in the eastern Canadian shelf waters. That error was found when comparing the
SSTin with operational SSTanalyses from both the Canadian Meteorological Centre and the U.S.
National Centers for Environmental Prediction. Stobart et al.26 found high correlations between
annual SSTin and SSTsat for 32 stations in the southern Australia coastal region, but they noted
significant seasonal and regional variability. Pramanik et al.27 found significant correlations
(r ¼ 0.78) between ROMS and MODIS satellite observations at the Sri Lankan dome region,
near the southern BoB. Furthermore, Lin et al.28 compared the Aquarius SSS with ARGO in situ
measurements and detected large negative biases in the northern BoB.

Differences between in situ (IS) observations, RS measurements, and numerical model out-
put, particularly on regional and seasonal scales, make comparison studies crucial. It is generally
accepted that remotely sensed measurements are well suited for large spatiotemporal scales
(e.g., in the open ocean or on weekly to monthly time scales).24,29 However, RS retrievals often
perform poorly in the coastal shelf waters and on sub-weekly time scales. In these coastal shelf
areas, SST and SSS products with horizontal grid spacing >1 km are unable to accurately cap-
ture all of the features located near the coastlines.30 Coastal waters can be dynamic and unsta-
ble,31 particularly where there are large riverine discharges. That is especially the case in the
northern BoB because the Ganges–Brahmaputra river transports ∼1 × 109 tons year−1 of sedi-
ment to the coast, ranking first (along with the Amazon outflow) among the world’s estuaries and
rivers in terms of sediment discharge.32–35 The continental shelf of the northern BoB, especially
from 21.5°N to 22.5°N, contains very high concentrations of total SPM, peaking at 95 kgm−3 in
summer,36 which is more than four orders of magnitude higher than in the open-ocean parts of
the IO (0.06 kgm−3).37,38 The presence of SPM significantly reduces sea surface radiative emis-
sivity of coastal water, thus disrupting the measurements of thermal radiometers that form the
core of satellite-based RS.39,40

The presence of estuaries and rivers causes the sediment composition to be extremely
complex.41 Thus, the higher concentration of sediments in the northern BoB makes it more prone
to these emission errors. The northeastern part of the continental shelf of the tropical IO is pre-
dominantly composed of low saline (10 to 15 PSU) surface water. These relatively low salinity
values are the result of significant river water influxes as well as strong overturning from the
seasonally dependent monsoon wind system.42 The surface salinity is coupled with a marked
annual cycle in SSTs.43 When SSTs in the BoB are warm, there is more precipitation, and surface
salinity is lower due to freshwater rain and river influx, again particularly in the continental shelf
region.44,45 The northern BoB tends to feature small-scale SSS boundaries in all four seasons.46

This regional variability in SSS is due to advection-induced freshwater fluxes.6 The relatively
small scale of the SSS features indicates that detailed high-resolution modeling and RS products
are needed to capture the salinity structure. However, comparisons between RS products, model
output, and in situ measurements remain scarce, partly because of the scarcity of in situ mea-
surements. Moreover, the fixed buoy network has degraded since about 2015,47,48 and there is a
lack of both research expeditions49 and routine cruises to collect in situ physicochemical
parameters.50,51 Thus, studies such as this one are crucial to understand the surface salinity and
temperature structure in the BoB.

Uncertainties of the regional application of the global model and satellite-derived SST and
SSS are the key inspirations to do this study. The applications of such models are often prob-
lematic, especially on a regional scale.52 The concern further escalates if the study region (e.g.,
BoB), lacks cruise-based observations36 and is dependent on model or satellite measurements.
Additionally, the presence of clouds, especially in the tropical region, limits some sensors’ capa-
bilities, resulting in data gaps.9 These gaps suggest a continued need for in situ measurements.
Finally, greater temporal and spatial coverage of in situ observations in the northern BoB, espe-
cially in the coastal shelf regions, would help to derive improved algorithms for satellite retrieval
of SST and SSS. These improved retrieval algorithms could lead to improved model parameter-
izations in numerical models, allowing them to better capture important regional processes.

Accurate representation of both SST and SSS would thus improve both ocean and atmos-
phere numerical model skills.53 Comparative studies such as this one are imperative, as these
would provide critical justification for subsequent statistical adjustments to satellite SSTand SSS
retrieval algorithms, resulting in improved representation of regional and small-scale disturb-
ances in the RS measurements. This study addresses two critical questions: (1) How do the
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model and remotely sensed data differ from in situ observations? (2) What are the spatial and
temporal biases in model output and satellite observations? The remainder of this article is organ-
ized as follows: the data and analytical methods are presented in Sec. 2. Results are presented in
Sec. 3. Discussion and conclusions are presented in Secs. 4 and 5, respectively.

2 Materials and Methods

2.1 Model Description

Daily surface ocean analyses from the Copernicus Marine Environment Monitoring Service
(CMEMS) NEMO ocean model (v3.1)54 at a horizontal resolution of 9 km at the equator and
a tripolar ORCA12 grid55 were compared with in situ surface measurements. The comparisons
were made for measurements taken between December 2018 and March 2020. The NEMOmod-
eling system uses two bathymetry products: it uses ETOPO1, which is a surface relief model on
a 1-arcmin grid,56 for deeper water (depth > 300 m) and the interpolated General Bathymetric
Chart of the Oceans (GEBCO08)57 for shallower water (depth < 200 m). A 7-day assimilation
cycle58 of reduced-order Kalman filter was applied to the three-dimensional (3D) multivariate
model, which itself was calculated from a singular extended evolutive Kalman (SEEK) filter.59

The model large-scale temperature and salinity biases were calibrated in a 3D-var scheme, and
in situ and RS salinity and temperature profiles were used to set the initial conditions in the
model. For more details on this assimilation cycle and 3D-var scheme, see Lellouche et al.58

To compare ocean model output with in situ observations from January 2016 to February
2016, another daily 3D global ocean forecasting product from a coupled ocean-atmosphere sys-
tem, also distributed by CMEMS,60 was used. This model was produced by the Met Office (UK)
and coupled (ocean-atmosphere) hourly to the NEMO ocean model (v3.4) with a resolution of
0.25 deg on the tripolar horizontal grid of ORCA025 (with a horizontal grid spacing of 28 km at
the equator). The model dataset uses a daily updated 3D ocean analyses at an equirectangular
projection in regular latitude and longitude, accompanied by 50 vertical levels down to 5500 m.
Bathymetry from ETOPO1 and GEBCO was implemented in this coupled model as well. The
model retained surface temperature and salinity through Haney retroaction, 3D Newtonian
damping, and correction of the pressure gradient in the tropics (see Bell et al.,61 for more details).

For this study, gridded daily mean values of model surface temperature (hereafter abbreviated
as SSTmod) and surface salinity (SSSmod) in the BoB were extracted from two model versions
(described below) at 0.083 deg horizontal resolution in the continental shelf region of the BoB.
In those cases where the high-resolution model data were not available (from January 2016 to
February 2016), model output at 0.25 deg resolution was the only one used. These values of
SSTmod and SSSmod were then compared with in situ SSTand SSS (see Sec. 2.2) and RS SSTand
SSS (see Sec. 2.3).

2.2 In Situ Measurements

In situ measurements of temperature, salinity, and density were acquired using a single-fire
module with CTD probe (Sea and Sun Technology GmbH). This CTD probe is capable of meas-
uring to 2000-m depth with a temperature accuracy of �0.002°C and a conductivity accuracy
of �0.002 mS cm−1.62 The most recent CTD profiles were collected in three field sessions. The
first session took place in January 2020, during a field expedition by the Department of
Oceanography and Hydrography of Bangabandhu Sheikh Mujibur Rahman Maritime University
(BSMRMU) aboard a fishing boat. The second session took place in February 2020, aboard the
Bangladesh Navy Ship, the “Sangu.” The final session took place in March 2020, where the
profiles were obtained aboard fishing vessel “Salman-2.”

These transects encompassed a total of 15 sites in both the eastern and western portions of the
continental shelf region of the northern BoB (see Fig. 1). The cruises occurred over 3 months,
and they sampled vertical depths down to 50 m. The raw CTD data were processed into a more
user-friendly NetCDF format for efficient storage, usage, and sharing.62 Vertical profiles of tem-
perature and salinity were taken from this processed CTD data. In this study, only surface values
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of temperature and salinity were analyzed; a follow-up study is planned to compare subsurface
temperature and salinity to model output. Another four CTD profiles were taken 1 year earlier, in
December 2018, at the mouth of the Karnapahuli river estuary using the same single-fire module
with CTD (Sea and Sun Technology GmbH). These four profiles were complemented by four
more CTD profiles of temperature and salinity taken in December 2018 on the north, west, south,
and east sides of St. Martin’s Island.63 Finally, 23 CTD profiles were obtained along 20.00°N to
21.20°N and 89.37°E to 92.20°E aboard the fishing vessel “Agro food-4” of Sea Resource Ltd.
during a winter fishing period, and these profiles were taken between January 2016 to February
2016. Thus, a total of 46 measurements from CTD profiles from the northern BoB spanning the
winter and spring months (December to March) from 2016 to 2020 were analyzed in this study.

2.3 Satellite Observations

Optimum Interpolation Sea Surface Temperature (OISST), also known as Reynolds SST, is the
RS dataset used here for comparison. OISST (hereafter abbreviated as SSTsat) is a gridded prod-
uct of 0.25 deg spatial resolution available daily.64,65 These OISST values are interpolated from
direct observations from the AVHRR. In both the model and satellite datasets, the grid values
closest to the stations were considered representative of the station conditions. Similarly, both the
model and satellite SST datasets were available daily, thus the daily value of each was compared
with the in situ observations made on that day. Finally, although OISST is a hybrid product,
including both satellite and in situ measurements, for the continental shelf area of the BoB,
we are not aware of any in situ surface observations available for assimilation into the near
real-time OISST product from January 2016 to March 2020 (the duration of our study). Thus,
the OISST product analyzed here is primarily based on satellite observations.

Satellite salinity measurements were obtained from the global SSS L4 dataset, which was
optimally interpolated onto a regular grid of 0.25 deg and later distributed by CMEMS. This
salinity dataset66 incorporates the near real-time European Space Agency’s (ESA) SMOS prod-
uct. High levels of noise generated during retrieval of SSS from satellites, along with substantial
data gaps from clouds, were filled using a multidimensional optimal interpolation method. This
interpolation was later validated from an in situ dataset.67,68 Near real-time weekly SSSsat values

Fig. 1 Study area located in the northern IO (marked on the inset globe). The yellow diamonds
represent the 46 sampling stations in the continental shelf of the northern BoB. Green, blue, white,
and red contours represent the depth of 20, 50, 100, and 500 m, respectively.
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were extracted from this product. Like the method used for SST, the average weekly value of SSS
from satellite was matched to the model and in situ SSS values from the nearest grid-point value.
All retrieved satellite and model temperature and salinity were gathered from open sources, and
those are briefly summarized in Table 1.

2.4 Quantifying Agreement between Datasets

To investigate and quantify the agreement between the in situ, RS, and model values of SST and
SSS, we calculated the Pearson correlation coefficient69 using the following equation:

EQ-TARGET;temp:intralink-;e001;116;317r ¼ n
�P

xy
�
−
�P

x
��P

y
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffih
n
P

x2 −
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x
�
2
ih
n
P

y2 −
�P

y
�
2
ir ; (1)

where x, in our case, is in situ measurements and y is either model output or satellite observa-
tions. This method was used to calculate the correlation of (1) SSTin and SSSin with (2) SSTmod

and SSSmod and (3) SSTsat and SSSsat. Additionally, scatter plots of these parameters were fitted
to a linear model with a 95% significance level using the ggpmisc package in R.70 Another
commonly used metric, the RMSE, was calculated to quantify differences between model and
satellite parameters (Pi) and the in situ values (Oi) using the mltools package71 in R:

EQ-TARGET;temp:intralink-;e002;116;185RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

n
i¼1 ðPi −OiÞ2

n

r
: (2)

In addition to RMSE, biases were calculated for the model and satellite parameters. The
biases were calculated by following the method of Thakur et al.,72 where the overlying grid
values of both model and satellite datasets were subtracted from in situ observations in the
corresponding grid. We calculated the standard deviation (SD) of the biases to depict overall
variations for different locations and sources.

Table 1 List of all the datasets used in this study, and their detailed information about the
spatiotemporal resolution and processing level.

Product
type Product name Production unit

Grid
(deg)

Processing
level

Temporal
extent Coverage

SST

Model Global Ocean 1/12° Physics
Analysis and Forecast Updated
Daily

Mercator Ocean 0.083 L4 Daily July 2018 to
Present

Model Global Analysis and Forecasting
Product from Coupled System

Met Office 0.25 L4 Daily December
2015 to
Present

Satellite OISST NOAA (AVHRR) 0.25 L4 Daily September
1981 to
Present

SSS

Model Global Ocean 1/12° Physics
Analysis and Forecast Updated
Daily

Mercator Ocean 0.083 L4 Daily July 2018 to
Present

Model Global Analysis and Forecasting
Product from Coupled System

Met Office 0.25 L4 Daily December
2015 to
Present

Satellite Global Observed Ocean Physics
Sea Surface Salinity Processing

Collected
Localisation

Satellites (CLS)

0.25 L4 Weekly July 2018 to
Present
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The index of agreement, or d-index, is a standardized measurement of error in model
prediction that ranges between 0 and 1. A d-index of 1 implies a perfect match with the
observations.73 This index is capable of distinguishing proportional and additive differences
of mean and variances of the simulated and observed values.74 Here, we calculated d-indices
between in situ (Oi) and satellite as well as model values (Pi). The following equation was used
to calculate the d-index (md), using the hydroGOF package75 in R:

EQ-TARGET;temp:intralink-;e003;116;663md ¼ 1 −
P

N
i¼1 jOi − SijjP

N
i¼1 jSi −Oj þ jOi −Ojj ; (3)

where O and S represent the observed and simulated values, respectively, and O is the mean of
the observed values. Additionally, i represents the initial states of both parameters and j is the
exponent applied in calculation of the d-index.

The final quantity used to assess the agreement between the in situ and model, and in situ and
satellite, was the concordance correlation coefficient (CCC),76 calculated using the DescTools
package in R.77 The CCC (ρc) represents precision, bias, and agreement with respect to a true
value or magnitude of the observation coinciding with the concordance line.78 The ρc quantifies
biases and the fit with the concordance line

EQ-TARGET;temp:intralink-;e004;116;520ρc ¼ rCb; (4)

where the bias correction factor is given as Cb. The CCC thus depicts the deviation of the best-fit
line, while r is the correlation coefficient between x and y. Cb is given as

EQ-TARGET;temp:intralink-;e005;116;465Cb ¼
�ðυþ 1∕υþ u2Þ

2

�−1
; (5)

where υ and u represent the scale bias (slope shift) and location bias (height shift), respectively.
These two terms can be expressed as

EQ-TARGET;temp:intralink-;e006;116;396υ ¼ σ1
σ2

; (6)

EQ-TARGET;temp:intralink-;e007;116;343u ¼ μ1 − μ2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ1 × σ2

p ; (7)

where μ1 and μ2 depict the means for the measurement and true values, respectively, and σ1 and
σ2 represent their SDs. The CCC thus quantifies the magnitude of deviation of a dataset from a
perfect agreement. CCC can be interpreted the same way as the Pearson’s correlation coefficient,
where values closer to 1 imply a stronger agreement with the observed value. CCC tends to be
closer to zero than Pearson’s correlation coefficient r.79

3 Results

3.1 Statistical Comparison

Scatter plots between in situ (SSTin) and satellite (SSTsat) [Fig. 2(a)], using the Student’s t-test,
show that model and in situ SSTare positively correlated (r ¼ 0.82, p < 0.001). We also used the
Student’s t-test to compare SSTin and SSTmod estimates [Fig. 2(b)], and these remain signifi-
cantly correlated (r ¼ 0.77, p < 0.001). In both cases, r values were statistically significant.

The mean bias and SD of bias for SSTmod were 0.43°C and 0.96°C, respectively (Table 2). For
SSTsat, the SD of bias was larger (1.06°C) than it was for SSTmod, even though the mean bias
decreased to 0.09°C. SSTmod and SSTsat had similar ranges of RMSE, 1.05°C and 1.07°C,
respectively. Moreover, SSTmod and SSTsat had similar indices of agreement (d-indices) of
0.66 and 0.65. SSTmod and SSTsat agree well with the in situ measurements, with a model
CCC of 0.92 and a satellite CCC of 0.95 (see Table 2).
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Unlike SST, which featured good agreement between in situ and both model and satellite,
satellite (SSSsat) and model (SSSmod) SSS differed from in situ observations by an average of
1.84 PSU. SSSmod was only weakly positively correlated with in situ measurements (r ¼ 0.54),
and SSSsat was uncorrelated (r ¼ 0.26) with in situ measurements [Figs. 3(a) and 3(b)].

Table 2 Summary table of all statistical analyses with the main results in this study.

Parameter Mean
Correlation
coefficient (r) P-value

SD of
bias

Mean of
bias RMSE

Index of
agreement CCC

SSTmod 24.3°C 0.82 <0.001 0.96 0.43°C 1.05°C 0.68 0.92

SSTsat 24.6°C 0.77 <0.001 1.06 0.09°C 1.07°C 0.65 0.95

SSSmod 27.9 PSU 0.53 <0.001 1.99 2.74 PSU 3.38 PSU 0.31 0.45

SSSsat 29.7 PSU 0.26 0.075 1.42 0.90 PSU 1.68 PSU 0.40 0.52

Fig. 2 Scatter plots of (a) in situ temperature versus model temperature, and (b) in situ temper-
ature versus satellite temperature, showing the Pearson correlation coefficient (r ) between
SSTmod and SSTsat with SSTin. A regression line (red), based on a linear model, is drawn to show
the best fit of the dataset, along with a semitransparent error bar (light green) showing a 95%
confidence interval. P-value of the correlation coefficient is given.

Fig. 3 As in Fig. 2, but for (a) in situ salinity versus model salinity, and (b) in situ salinity versus
satellite salinity.
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The SSSmod had a mean bias of þ2.74 PSU when compared with in situ measurements.
There was also large variance in SSSmod, with a SD of 1.99 PSU (Table 2). The mean bias
of SSSsat was þ0.90 PSU. The largest SD of the biases was 1.42 PSU, which was observed
for SSSsat (Table 2). Similarly, SSSmod had a maximum RMSE of 3.38 PSU, whereas the
RSME of the satellite was 1.68 PSU. This suggests that neither the model nor the satellite cap-
tured SSS well, and moreover, the model significantly underperformed the satellite. SSSmod and
SSSsat had d-index values of only 0.31 and 0.40, respectively, indicating low agreement between
both model and satellite and in situ SSS measurements. Additionally, both SSSmod (CCC of 0.45)
and SSSsat (CCC of 0.52) had weaker concordance correlations than they did with SST. We
discuss several possible reasons for the poor model performance in the next section.

3.2 Spatial Variability in SST and SSS Biases

Model SST products seem to have a positive bias. Most model SST grid points were overesti-
mated by between þ0.5°C and þ2.7°C. This indicates that model SSTs were generally warmer
than the observations [Fig. 4(a)]. The warm bias was strongest near the southeastern coastlines of
the northern BoB, over the continental shelf region. While most of the model biases were warm,
negative (cold) biases of relatively smaller magnitude (−1.0°C to −1.5°C) were also noticed in
the study area. Fourteen station locations had small model SST biases (between −0.5°C and
þ0.5°C), and we consider those locations to be similar to the in situmeasurements. While model
SST biases were mostly positive, satellite SSTs [Fig. 4(b)] had predominately negative biases,
ranging from −0.5°C to −1.5°C, with only six points depicting strong positive bias (þ1.0°C to
þ2.7°C). Both positive and negative SSTsat biases did not have any distinct spatial pattern, and
both were somewhat evenly dispersed on two fringes of the continental shelf of the bay. Overall,
eight station locations had satellite SST small biases (between −0.5°C and þ0.5°C).

The salinity analysis revealed both positive (i.e., salty) and negative (i.e., fresh) biases over
the region. SSSmod [Fig. 5(a)] had a mostly positive bias, with only three points having a negative
bias. Most of the overestimations (24 stations) were between þ0.5 and þ4.0 PSU. The saltiest
model overestimations (þ4.0 to þ7.5 PSU) were found in the eastern region of the study area.
Model biases between −0.5 and þ0.5 PSU were considered small, but unlike SSTmod where 14
stations had small biases, only two stations had small SSSmod biases. SSSmod featured a distinct
longitudinal variation in bias, where the salinity overestimations occurred in the eastern BoB and
underestimations occurred in the western BoB. In contrast to model salinity, the satellite salinity
had an opposite pattern: a positive or saltier bias (þ0.5 to þ2 PSU) in the west and fresher or
negative bias (−0.5 to −2.1 PSU) in the eastern areas of the study area [Fig. 5(b)]. Moreover,
positive satellite SSSsat salinity overestimations were generally much smaller in magnitude
(<2 PSU) than the model biases, particularly in the eastern part of the BoB. Finally, SSSsat had
12 stations with small over or underestimations (between −0.5 and þ0.5 PSU).

4 Discussion

The primary goal of this study was to evaluate model and satellite SST and SSS products in the
northern BoB. We accomplished that goal by comparing both model output and satellite mea-
surements with in situ surface observations obtained during three cruises: January 2016 to
February 2016, December 2018, and January 2020 to March 2020. To the best of our knowledge,
this is the first comparative study using these recent datasets in this part of the BoB. Our results
suggest that among all the products considered, the model and satellite SST products best
matched with the in situ measurements over the northern BoB. However, model output and sat-
ellite measurements of salinity did not agree at all with the in situ observations over the northern
BoB. Our results agree with other comparative studies performed in coastal areas, who also
found low biases and high correlations between in situ SST and model and satellite SST24,29

along with high biases and low correlations between in situ SSS and model and satellite SSS.72

Recent work suggests the introduction of new parameterizations in the NEMO model, such
as additional dynamic height statistics and assimilations from several sources, can explain the
agreement with in situ measurements.80 Despite the reports of larger biases in SSTsat in different
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shelf regions, including off the coasts of China,81 South Africa,82 the United States,83,84 and
Western Australia,85,86 the continental shelf areas of the BoB features significantly smaller bias
in SSTsat. Calculated model (0.68) and satellite (0.65) d-index values for SST in this study sug-
gest both model and satellite SSTs agreed well with the in situ measurements made during the
cruise. We found RMSE for SSTmod and SSTsat to be 1.05°C and 1.07°C, respectively, which are
larger than the global average RMSE of 0.4°C calculated by Brasnett,87 but smaller than the
values (1.5°C) reported by Chen and Hu.88 The larger RMSE temperature values are possibly
explained by small-scale horizontal temperature gradients not captured well by the model or
resolved well by the satellite.25 Steep gradients typically exist between the northern and southern
part of the BoB,89 and those are sometimes poorly represented in either satellite or model output.
Indeed, the RSME was larger in regions where the climatological SST gradient is larger and
smaller in regions where the gradient tends to be smaller. Nevertheless, the CCC calculation

Fig. 4 The bias of (a) model and (b) satellite were compared with in situ measurements of SST
over the continental shelf of the northern BoB. Points were categorically plotted where positive and
negative biases are illustrated with red and blue points, accordingly. The deeper the correspond-
ing color is, the higher the biases of corresponding color is.
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affirmed that both SSTmod and SSTsat agreed with in situ SST: SSTmod (CCC ¼ 0.92) and SSTsat

(CCC ¼ 0.92). This good fit could possibly be attributed to one of the inherent characteristics of
the AVHRR satellite’s IR sensor, as IR sensors can retrieve SST within 1 km of the coastline.
Most of the stations in this study were more than 1 km from the coastline.

The diurnal cycle of SST over the ocean is relatively small because of seawater’s large heat
capacity.90 Consideration of diurnal skin SST remains crucial for the tropics as it yields enhanced
forecast.91 Surface fluxes are subjectively affected by diurnal to intraseasonal scales due to the
diurnal variability of skin SST.92 All but two of the in situ measurements were made during the
day, and those observations were then compared with the daily averaged model and satellite SST.
Therefore, diurnal variability could have contributed to some of the differences between SSTin

and SSTsat. Such diurnal variations have been reported in several regional seas, including the
Mediterranean Sea,93 Sargasso Sea,94 equatorial tropical Pacific,95 western North Pacific,96 and
western North Atlantic.97 But, there has been very limited study of the diurnal variability of SST

Fig. 5 As in Fig. 4, but for the bias of (a) model and (b) satellite SSS compared with in situ mea-
surements, where positive and negative biases are represented by green and brown respectively.
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in the BoB, and one such study suggests that the diurnal cycle is strong only during warming
phases of the intraseasonal oscillations of SST.98 Nevertheless, including the effects of the
diurnal variation in the regional model algorithm would enhance the model’s performance and
coupling, as it would represent the air–sea interactions more accurately,99 even on a longer time
scale.100

Turning to SSS, d-index values for the model (0.31) and satellite (0.40) SSS suggested those
datasets agreed only weakly with in situ cruise data. The RMSE increased to þ3.4 PSU for
SSSmod and þ1.7 PSU for SSSsat. CCC values for SSSmod and SSSsat were low (0.45 and
0.52, respectively), confirming that both model and satellite SSS did not agree with the in situ
measurements. The study area is subject to heavy freshwater influx from precipitation and river
discharge, along with vertical stratification and horizontal advection. As such, high RMSE
values for SSS products could be attributed to these physical processes, as they strongly affect
general patterns of SSS and occur at scales that could be difficult to capture for both models and
satellites. Furthermore, the radio frequency interference errors (ocean reflected radio frequency
errors in passive microwave measurements) for RS products might be another possible cause for
the SSSsat disagreements with the in situ SSS.101

The coarse spatial resolution of the model and satellite products could also explain the dis-
parities. It is known that ESA’s SMOS data are often not suitable for coastal and estuarine studies
as they can be too coarse at times.30 This could be one of the many reasons for the differences
between SSSsat and SSSin. Similar to the SST differences, it is also possible that the differences
in SSS between in situ and model and satellite observations could be explained by temporal
offsets between model (daily) and satellite (weekly values) and the instantaneous diurnal cycle
sampled at the moment of the in situ SSS measurements. However, that would suggest that
satellite values might be worse than model output, when the opposite was found here. The annual
influx of 1300 km3 of freshwater from the Ganga–Meghna–Brahmaputra river system102 causes
very large fluctuations in the surface salinity in the continental shelf seas of the northern BoB,
and those fluctuations could possibly occur on sub-weekly time scales. However, the freshwater
fluctuations are not directly captured by the salinity model, thus forcing the model to rely upon
pseudo-observations (climatological river-runoff) with a higher signal to noise ratio (see the
processing manual for the SSS data by CMEMS for more details). Another possible reason for
the deviation could be that model salinity parameterizations and satellite salinity retrieval algo-
rithms were developed for open-ocean applications, rather than coastal sites. Correction for only
the large-scale biases was performed in the numerical model, which possibly limited the appli-
cability here. It must be mentioned that we are aware of no comprehensive studies on the vari-
ability of SSS in the continental shelf of the BoB. We suggest that further study is necessary, and
particularly additional field campaigns are needed over the shelf region of the BoB where high
freshwater influx and stratification are occurred.

To summarize, continental shelf areas in the BoB are data-poor regions, as no continuous or
long-term physical parameter datasets are available for the region. The northern BoB remains a
highly dynamic region, especially along the coast and shelf region. Coastal shelf basins are prone
to high short-term sedimentation,103 and moreover, surface hydrographic forcing, with daily to
even hourly variations, regularly alters the oceanographic conditions of coastal zones.104,105

These ever-shifting surface processes are, at present, better captured with in situ measurements
than numerical models or by satellite retrieval algorithms. Nevertheless, in situmeasurements are
not always openly accessible and are expensive to arrange. Satellite and models can overcome
these limitations and provide continuous physiochemical information on the continental shelf areas
of the BoB, but they are only useful when they compare favorably with in situ measurements.

5 Conclusions

This study presents evidence that in the data-poor region of the northern BoB, satellite obser-
vations and model analyses compare well with in situ measurements of SST but poorly with in
situ measurements of SSS. We suggest that differences in the SSS in both satellite products and
model analyses can be reduced by increasing the number of in situ observations and increasing
the resolution of satellite data to better constrain the model in this region. Field campaigns are
needed to continue to gather in situ data in both the coastal and the open-ocean regimes of the
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BoB. More in situ measurements would assist in improving models or satellite algorithms that
would more accurately capture the physicochemical conditions in the BoB.

6 Appendix A

The in situ measurements used in this study was done through the CTD deployments on several
different occasions in 2016, 2018, and 2020. The stations’ information was given in the follow-
ing table (Table 3).

Table 3 The list of the available information of bathymetry, weather conditions, and other meta-
data for the sampling sites used in this study.

St.
No

Latitude
(°E)

Longitude
(°N)

Date
(month date, year)

Time
(GMT + 6)

Depth
(m) Tide

Weather
condition

1 20.64 92.32 February 26, 2018 11:15 a.m. 1.82 High Sunny

2 20.61 92.32 February 27, 2018 11:37 a.m. 2.32 High Sunny

3 20.59 92.33 February 27, 2018 12:04 p.m. 2.07 High Sunny

4 20.61 92.33 March 1, 2018 12:50 p.m. 0.16 Low Sunny

5 21.25 91.87 December 22, 2018 09:26 a.m. 20.63 Low Sunny

6 21.20 91.87 December 22, 2018 09:52 a.m. 23.17 Low Sunny

7 21.20 91.82 December 22, 2018 01:52 p.m. 20.61 High Sunny

8 21.25 91.82 December 22, 2018 02:31 p.m. 18.08 High Partially
cloudy

9 20.58 92.36 January 2, 2020 05:17 p.m. 7.18 High Sunny

10 20.64 92.32 January 3, 2020 10:04 a.m. 11.60 Low Sunny

11 20.51 90.67 February 7, 2020 2:29 p.m. 83.06 High Partially
cloudy

12 20.60 92.10 February 8, 2020 09:38 a.m. 28.90 Low Sunny

13 21.31 90.47 February 9, 2020 11:06 a.m. 14.38 Low Sunny

14 21.38 90.28 February 9, 2020 08:54 a.m. 4.79 High Sunny

15 21.32 90.16 February 9, 2020 09:56 a.m. 26.57 Low Sunny

16 21.29 89.81 February 9, 2020 11:57 a.m. 19.57 High Sunny

17 21.29 89.70 February 9, 2020 04:42 p.m. 27.71 High Sunny

18 21.61 89.80 February 9, 2020 03:50 p.m. 5.47 High Sunny

19 20.85 90.97 February 9, 2020 11:18 a.m. 82.74 Low Sunny

20 20.51 90.58 March 18, 2020 12:31 p.m. 90.41 Low Sunny

21 20.85 92.14 March 19, 2020 11:53 a.m. 11.95 High Sunny

22 20.98 91.83 March 19, 2020 06:07 p.m. 54.19 Low Partially
cloudy

23 21.13 91.09 March 21, 2020 10:45 a.m. 10.49 High Sunny

24 20.96 91.61 January 18, 2016 12:10 p.m. 85.85 Low Sunny

25 20.95 91.63 January 20, 2016 02:20 p.m. 79.01 High Partially
cloudy
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Table 3 (Continued).

St.
No

Latitude
(°E)

Longitude
(°N)

Date
(month date, year)

Time
(GMT + 6)

Depth
(m) Tide

Weather
condition

26 20.89 91.73 January 21, 2016 04:50 p.m. 54.78 High Sunny

27 20.56 91.95 February 2, 2016 11:45 a.m. 43.85 High Sunny

28 20.74 91.87 January 25, 2016 05:25 p.m. 33.63 High Sunny

29 21.01 91.51 January 23, 2016 11:05 a.m. 47.14 Low Sunny

30 20.63 91.96 January 27, 2016 09:35 p.m. 28.98 High Night

31 20.61 91.96 January 27, 2016 10:11 p.m. 20.07 High Night

32 20.86 91.87 January 29, 2016 09:40 a.m. 15.38 High Sunny

33 20.59 91.97 January 27, 2016 10:35 p.m. 15.38 High Cloudy

34 20.77 91.84 January 30, 2016 10:45 a.m. 38.17 High Sunny

35 20.45 91.97 January 27, 2016 11:40 a.m. 50.45 Low Sunny

36 20.51 91.95 January 28, 2016 05:40 p.m. 51.93 Low Partially
cloudy

37 20.60 91.91 January 28, 2016 04:15 p.m. 54.05 Low Partially
cloudy

38 20.58 91.95 January 29, 2016 05:15 p.m. 25.04 High Sunny

39 20.98 91.80 January 29, 2016 10:45 a.m. 27.67 High Sunny

40 21.05 90.96 February 4, 2016 12:06 p.m. 36.29 Low Sunny

41 21.31 89.67 February 5, 2016 10:55 a.m. 35.86 High Sunny

42 21.28 89.79 February 5, 2016 11:47 a.m. 18.21 High Sunny

43 21.13 90.40 February 6, 2016 04:36 p.m. 36.94 Low Sunny

44 21.14 90.27 February 7, 2016 09:14 a.m. 62.53 Low Sunny

45 21.09 90.59 February 8, 2016 01:29 p.m. 44.12 High Sunny

46 20.94 91.72 February 11, 2016 10:05 a.m. 60.96 Low Sunny
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