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Arctic Amplification is a fundamental feature of past, present, and modelled future climate.
However, the causes of this “amplification” within Earth’s climate system are not fully
understood. To date, warming in the Arctic has been most pronounced in autumn and
winter seasons, with this trend predicted to continue based on model projections of future
climate. Nevertheless, the mechanisms by which this will take place are numerous,
interconnected. and complex. Will future Arctic Amplification be primarily driven by local,
within-Arctic processes, or will external forces play a greater role in contributing to changing
climate in this region?Motivated by this uncertainty in future Arctic climate, this review seeks to
evaluate several of the key atmospheric circulation processes important to the ongoing
discussion of Arctic amplification, focusing primarily on processes in the troposphere. Both
local and remote drivers of Arctic amplification are considered, with specific focus given to
high-latitude atmospheric blocking, poleward moisture transport, and tropical-high latitude
subseasonal teleconnections. Impacts of circulation variability and moisture transport on sea
ice, ice sheet surface mass balance, snow cover, and other surface cryospheric variables are
reviewed and discussed. The future evolution of Arctic amplification is discussed in terms of
projected future trends in atmospheric blocking andmoisture transport and their coupling with
the cryosphere. As high-latitude atmospheric circulation is strongly influenced by lower-latitude
processes, the future state of tropical-to-Arctic teleconnections is also considered.
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INTRODUCTION: ARCTIC AMPLIFICATION–LOCAL AND REMOTE
CAUSES

Arctic-amplified near-surface atmospheric warming is a fundamental feature of past climate
warming periods, present-day warming trends, and modeled future changes to the Earth’s
climate system. However, the causes of this “Arctic amplification” are not fully understood
(Serreze and Barry, 2011). Amplified Arctic warming has been most pronounced during autumn
and winter, and model simulations project this will remain the case in future warming scenarios
(Serreze and Francis, 2006; Lu and Cai, 2009; Serreze et al., 2009; Screen and Simmonds, 2010;
Bintanja and van der Linden, 2013; Cohen et al., 2014; Dai et al., 2019). A number of interconnected
physical processes, occurring within and external to the Arctic and with distinct seasonal variability,
have been identified as contributing to Arctic amplification (Taylor et al., 2013; Yoshimori et al.,
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2014a; Kim and Kim, 2017; Lang et al., 2017; Goosse et al., 2018;
Park et al., 2018; Stuecker et al., 2018; Ding et al., 2019).

The earliest-identified cause of enhanced warming is the ice-
albedo (or surface-albedo) feedback, whereby some initial warming
reduces polar ice and snow cover and causes a greater fraction of
incoming solar radiation to be absorbed, which further accelerates
warming and albedo reduction (Budyko, 1969; Cess et al., 1991;
Serreze et al., 2009). Other local feedback processes that may
contribute to enhanced warming in the absence of extra-Arctic
influence include the lapse rate and Planck feedbacks (Manabe and
Wetherald, 1975; Crook et al., 2011; Pithan and Mauritsen, 2014;
Hahn et al., 2020; Previdi et al., 2020), as well as cloud and water
vapor feedbacks (Graversen and Wang, 2009; Cox et al., 2015; Kay
et al., 2016; Södergren et al., 2018; Huang et al., 2019; Feldl et al.,
2020; Middlemas et al., 2020) in an atmosphere moistened by sea ice
decline (Boisvert et al., 2015; Jun et al., 2016; Taylor et al., 2018; Rinke
et al., 2019b). Extra-Arctic processes, in particular changes to large-
scale atmospheric and oceanic circulation and related changes in
poleward atmospheric moist and dry static energy transport (e.g.,
Yang et al., 2010; Alexeev and Jackson, 2013; Zhang et al., 2013;
Graversen and Burtu, 2016; Gong et al., 2017; Yoshimori et al., 2017),
also contribute to Arctic amplification and are entangled with intra-
Arctic feedbacks in complex ways. For example, cyclones facilitating
poleward warm, moist air from lower latitudes may induce an initial
retreat of sea ice, which strengthens the local ice-albedo feedback.
This in turn amplifies the lapse rate feedback, which can be
understood as a manifestation of accentuated lower-tropospheric
warming dictated by the surface temperature change (Boeke et al.,
2021). Feldl et al. (2020) and Boeke et al. (2021) argue that Arctic
amplification should be attributed to the physical processes that
establish the nonuniform vertical warming profile producing the
lapse rate feedback, rather than the lapse rate feedback per se.

Given this debate, in this review, we focus on several of the key
processes important to the ongoing discussion on Arctic
amplification, focusing primarily on processes in the
troposphere associated with blocking, moisture transport, and
subseasonal influences. Our focus in the next sections is as
follows: first, we review atmospheric blocking, including its
definition, current challenges to identify present and future
blocking, its relationship with moisture transport in the Arctic,
and the impacts from Arctic blocking and moisture intrusions.
We then review tropical-to-high latitude teleconnections that
exert critical control on Arctic processes on the subseasonal time
scale, both in the atmosphere and cryosphere. We conclude the
review with a forward-looking assessment of how these
interrelated topics are expected to evolve in future climate.

ARCTIC CIRCULATION FEATURES:
BLOCKING, MOISTURE TRANSPORT, AND
COUPLING WITH THE CRYOSPHERE

Blocking Definition, Identification, and
Northern Hemisphere Climatology
Blocking is broadly defined as a quasi-stationary anomalous
anticyclonic circulation pattern which disrupts the eastward
propagation of cyclones and other systems (AMS American

Meteorological Society, 2020). The formation of a blocking
flow pattern results from disruption of the background flow
interactions with Rossby wave dynamics (Woollings et al.,
2018 and references therein). Mechanisms contributing to the
building and maintenance of blocked systems can include moist-
thermodynamic processes during cyclogenesis and transient
eddies (e.g., Pfahl et al., 2015; Steinfeld and Pfahl, 2019). More
recently, blocking has been described by the column budget of
Local Wave Activity, using an analogy to traffic congestion
(Nakamura and Huang 2018). Direct meteorological impacts
of long-lived blocks vary seasonally, primarily resulting in
extreme heat and cold airmasses (e.g., Brunner et al., 2018;
Schaller et al., 2018), as well as increased advection of heat
and moisture along the periphery of the anticyclones (e.g.,
Barrett et al., 2020; Mattingly et al., 2018) (Figure 1). In the
high latitudes, environmental consequences can include
significant loss of sea ice and ablation of land ice, as discussed
in detail in Tropical-High Latitude Subseasonal Teleconnections
(e.g., McLeod and Mote, 2016; Tedesco et al., 2016; Wernli and
Papritz, 2018).

The broad definition of blocking has led to a variety of
different methodological considerations for quantifying
blocking and its impacts in the mid- and high-latitudes,
particularly regarding spatial and temporal constraints and the
dynamic considerations, as explained further in Woollings et al.,
2018. The definition of atmospheric blocking has changed over
time, resulting in a variety of different blocking identification
methods used today. The earliest blocking detection studies, such
as Rex (1950), defined blocking as a split jet over a 45°

longitudinal span and persisting for 10 or more days. This
definition was later revised to include shorter minimum
durations, inclusion of latitudinal ranges, geopotential height
anomaly thresholds, or a combination of these (e.g., Geb 1966;
Charney et al., 1981; Treidl et al., 1981; Lejenas and Øakland,
1983). This has resulted in several papers highlighting advantages
and disadvantages of differing methods (Barnes et al., 2012;
Woollings et al., 2018; Wachowicz et al., 2021). While we do
not intend to detail each separate metric available nor provide an
exhaustive list, we briefly discuss some metrics below.

Geopotential Height-Based Indices
Geopotential height-based blocking identification methods are
most common, given that geopotential height data is almost
universally available in atmospheric reanalysis products and
climate model intercomparisons. Consequently, metrics
measuring the reversal of the 500-hPa height gradient (e.g.,
Lejenas and Øakland, 1983; Tibaldi and Molteni, 1990) are
most common (Figure 2A). These methods use a constant
reference latitude (e.g., 60° N) about which the gradient is
computed (Tibaldi and Molteni, 1990), but these approaches
may mischaracterize blocking in some regions (Pelly and
Hoskins, 2003; Dunn-Sigouin and Son, 2013).

Other height-based metrics calculate regional average
geopotential height, such as the Greenland Blocking Index
(GBI) (Figure 2B) (e.g., Fang 2004; Hanna et al., 2014; Hanna
et al., 2016) and Alaska Blocking Index (McLeod et al., 2018),
where positive regional anomalies typically indicate blocking
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FIGURE 1 | Example of atmospheric rivers detected using MERRA-2 data at July 11, 2012 0000 UTC. Purple outlines identify features classified as atmospheric
rivers based on the criteria outlined in Mattingly et al. (2018); Table 1.

FIGURE 2 | A Greenland blocking event on July 11, 2012 seen in (A) 500 hPa height, (B) 500 hPa height anomalies compared with the 1981–2010 JJA
climatology, and (C) potential temperature at 2PVU. The box corresponds to the spatial extent of the GBI boundary, from Wachowicz et al. (2021).
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conditions. While computationally straightforward, this anomaly
type of method may be sensitive to long-term increases in
geopotential heights due to climate change (Christidis and
Stott, 2015), and may require detrending of the height field
prior to calculation (Hanna et al., 2018a; Wachowicz et al.,
2021). Similarly, the method described in Dunn-Sigouin and
Son, 2013–based on methods from Barriopedro et al. (2010)
and Dole and Gordon (1983)–calculates and tracks geopotential
height anomalies, which reduces errors in blocking classification
that occur when using a constant, reference latitude. Both height
reversal and anomaly methods have various spatial, temporal,
and amplitude constraints that vary by study, particularly
regarding what constitutes instantaneous, regional, and sector
blocking events and episodes (e.g., Tibaldi and Molteni, 1990;
Dunn-Sigouin and Son, 2013).

PV-Θ -Based Indices
Methods employing a potential vorticity-potential temperature
(PV-Θ) approach, which generally follow from Pelly and Hoskins
(2003), identify instances of a reversal in the meridional potential
temperature (Θ) gradient on a constant PV surface (Figure 2C).
An advantage to these methods stems from theory in that Θ is
conserved in the absence of diabatic processes (Hoskins et al.,
1985; Hoskins 1997). These methods (e.g., Pelly and Hoskins,
2003; Tyrlis and Hoskins, 2008) consider the climatology of
annual transient eddy kinetic energy (TEKE) in establishing a
reference latitude, which varies with longitude. Moreover, the use
of seasonal TEKE may better identify blocking in some regions
(Tyrlis and Hoskins, 2008; Masato, et al., 2012; Wachowicz et al.,
2021). This method has been adapted to examine Rossby wave
breaking characteristics from blocking (e.g., Masato et al., 2012;
Masato et al., 2013a; Woollings et al., 2018).

Despite their theoretical advantages, shortcomings of these
methodologies include primarily the lack of isentropic variables,
primarily in global climate model (GCM) output. As a
consequence, others have been able to successfully apply
somewhat similar techniques to 500-hPa data to examine
blocking in these datasets (e.g., Barnes et al., 2012; Barnes,
et al., 2014; Masato et al., 2013b; Simpson et al., 2020). Barnes
et al. (2012) report that there is systematically little difference in
blocking representation in climate models when comparing the
methods, including Tibaldi and Molteni (1990) and Pelly and
Hoskins (2003).

While the geographical distribution and frequency of blocking
may vary depending on the blocking metric used, some common
themes do emerge. Broadly, blocking activity is greatest along the
climatological storm tracks—e.g., over theNorthAtlantic and Pacific
Basins or over Asia (Lejenas and Øakland, 1983; Tibaldi and
Molteni, 1990; Pelly and Hoskins, 2003). Depending on the
method used, blocking occurs over preferred regions including
Greenland, Europe, the Central Arctic, Ural-Siberia, and the
North Pacific (e.g., Barnes et al., 2014; Horton et al., 2015;
Woollings et al., 2018). Furthermore, application of these metrics
typically shows blocking to be most common in winter and early
spring and least common in summer due to climatological cyclone
frequency (Woollings et al., 2018; Lupo 2020).

Stationary and transient eddies within Rossby waves increase
poleward moisture and heat transport, and act to enhance upper-
level ridges (Franzke et al., 2011; Baggett et al., 2016; Zhang and
Wang, 2018; Steinfeld and Pfahl, 2019), leading to blocking
conditions over a region (Kim and Kim, 2017; Yang and
Magnusdottir, 2017). Rossby wave breaking and diabatic
processes, such as latent heat release from moisture transport,
can both play an effective role in generating and maintaining
blocks (e.g., Masato et al., 2013a; Woollings et al., 2018; Luo et al.,
2019; Steinfeld and Pfahl, 2019; Steinfeld et al., 2020). Though the
average measured duration of blocking events is dependent on
identification methodology, identification efforts indicate that
individual blocking events typically last 4 to 9 or more days
(Pelly and Hoskins, 2003; Tyrlis and Hoskins, 2008; Lupo et al.,
2019). We direct the reader to Lupo (2020) for a more detailed
description of specific climatological characteristics of Northern
Hemisphere blocks. However, understanding high-latitude
moisture transport pathways in more detail is required to fully
quantify the impact of blocking within the Arctic climate system
and these connections to Arctic amplification more broadly.

Arctic Moisture Transport Pathways and
Climatology
The geographical setting of the Northern Hemisphere high
latitudes—with oceanic “gateways” in the Atlantic and Pacific
sectors opening to the partially confined Arctic Ocean basin, at
the downstream terminus of major extratropical storm
tracks—facilitates the coupling of Arctic climate with lower-
latitude processes. One of the primary ways lower-latitude
processes affect the Arctic is through direct poleward heat and
moisture fluxes in the atmosphere, which act to partially offset the
global radiative imbalance between the tropics and poles
(Trenberth and Solomon, 1994; Overland et al., 1996). The
major pathways for meridional sensible and latent energy
transport into the Arctic are through the North Atlantic
(including the Fram Strait and Barents-Kara seas to the east of
Greenland and the Labrador Sea/Baffin Bay pathway to the west
of Greenland), North Pacific, and Siberian sectors (Sorteberg and
Walsh, 2008; Woods et al., 2013; Woods et al., 2017; Dufour et al.,
2016; Vázquez et al., 2016; Xu et al., 2020; Mewes and Jacobi,
2019; Mewes and Jacobi, 2020). Most prior studies have focused
on meridional moisture rather than sensible heat transport, and
have found that moisture transport into the Arctic is greatest
during summer and minimized during winter (Dufour et al.,
2016). During winter (DJF), poleward moisture transport is
mainly confined to the Barents-Kara seas and, to a lesser
extent, the Labrador/Baffin Bay and North Pacific transport
pathways (Naakka et al., 2019; Nygård et al., 2020). During
summer (JJA), mean moisture transport is directed poleward
through the North Pacific, Siberian, and Labrador/Baffin Bay
pathways, with moisture transport in the North Atlantic sector
tending to be diverted zonally over Eurasia and onward into the
Siberian pathway (Naakka et al., 2019 - see their Figure 1). Spring
(MAM) and autumn (SON) exhibit a mixture of winter and
summer characteristics, likely because these averaging periods
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capture transitions between the maximally frozen and thawed
Arctic seasons (Tilinina et al., 2014; Dufour et al., 2016).

Moisture transport into the Arctic does not occur in a
temporally uniform manner, but rather is primarily
accomplished through intense, short-lived events that are
typically linked to cyclones (Sorteberg and Walsh, 2008;
Dufour et al., 2016; Rinke et al., 2017; Villamil-Otero et al.,
2018; Fearon et al., 2020) and Rossby wave breaking (Liu and
Barnes, 2015). These events are often termed “moisture
intrusions” (e.g., Doyle et al., 2011; Woods et al., 2013; Woods
et al., 2017; Johansson et al., 2017; Yamanouchi, 2019; Ali and
Pithan, 2020) and may resemble the narrow “atmospheric rivers”
found in the mid-latitudes (Hegyi and Taylor, 2018; Komatsu
et al., 2018; Nash et al., 2018; Vázquez et al., 2018).

Greenland Blocking: Impacts on Ice Sheet
Surface Mass Balance and Relationships
With Moisture Transport
Research efforts during the era of Arctic amplification have
placed specific attention on atmospheric blocking and
associated moisture transport over Greenland due to its
impact on the surface mass balance (SMB) of the Greenland
Ice Sheet (GrIS). Greenland blocking events encourage surface
melt through a variety of mechanisms that will be discussed below
and, as such, are strongly associated with increased GrIS surface
melt and runoff over synoptic to decadal timescales (Hanna et al.,
2013; Häkkinen et al., 2014; Hermann et al., 2020). This amplified
runoff from the ice sheet can impact the climate system in several
ways, including through contributions to global sea level rise.
GrIS mass loss has contributed approximately 14 mm of sea level
rise since the 1970s (Mouginot et al., 2019)–exceeding the upper
end of estimates from GCM projections (Slater et al., 2020)–while
continued runoff is expected to contribute from 5 to over 30 cm
by the end of the century, and complete melt of the ice sheet
would raise sea level by over 7 m (Aschwanden et al., 2019).

From a synoptic perspective, Greenland blocking events
encourage melt by transporting moist, potentially warm air
from unusually low latitudes poleward within the amplified
ridge of the blocking anticyclone (Oltmanns et al., 2019;
Steinfeld and Pfahl, 2019; Hermann et al., 2020), causing
widespread, positive surface temperature anomalies across the
ice sheet (Hanna et al., 2014; McLeod andMote, 2016) (Figure 2).
Advection from lower latitudes is greatest along the upstream side
of the ridge. A common pattern involves southerly winds tracking
the western coast of Greenland and curving anticyclonically to the
north of the high-pressure center, transporting warm, moist air
poleward through the Labrador Sea/Baffin Bay pathway (Baggett
and Lee, 2019; Akers et al., 2020) described in Arctic Moisture
Transport Pathways and Climatology (see Figure 1). This results
in onshore flow over the ice sheet—a synoptic setting conducive
to meltwater production (Mote, 1998b; Fettweis et al., 2011;
Fettweis et al., 2013; McLeod and Mote, 2016). This transport
of warm, moist air from lower latitudes along with the associated
cloud cover anomalies produce widespread surface melt via a
spatially varying surface energy balance (SEB) response
(Cullather and Nowicki, 2018). However, this exact blocking

and moisture transport pattern is not observed during all
major GrIS melt events, and the most recent such event in
July 2019 involved an unusual blocking pattern transiting
westward from Europe to Greenland (Cullather et al., 2020).

The strong advection of heat and moisture during Greenland
blocking plays a crucial role in augmenting melt over the steep
margins of the ice sheet by mixing warm, moist air to the surface
from above the stable boundary layer that typifies the near surface
atmosphere, thus enhancing sensible and latent heat flux and
increasing the net SEB (Duynkerke and van den Broeke, 1994;
van den Broeke and Gallée, 1996; Mattingly et al., 2020).
Turbulent heat flux associated with Greenland blocking has
been shown to dominate the SEB response during intense melt
across much of the ablation zone (Fausto et al., 2016a; Fausto
et al., 2016b).

The cloud-radiative effects associated with Greenland
blocking are reflective of the interaction between the large-
scale synoptic setting and the topography of the ice sheet. As
the flow is directed inland to the north of the high-pressure
center, anomalously warm and moist air ascends the windward
side of the ice sheet, cooling adiabatically (Hahn et al., 2020). This
generates an increase in cloud cover and attendant downward
longwave radiation while reducing incoming shortwave radiation
over northern Greenland and higher elevations of the ice sheet
(Hahn et al., 2020; Ward et al., 2020). Conversely, the southern
part of the ice sheet is more frequently embedded within the ridge
and, consequently, experiences cloud-suppressing subsidence
that causes a reduction in downwelling longwave radiation
and an increase in incoming shortwave radiation (Hofer et al.,
2017; Noël et al., 2019; Hahn et al., 2020; Ward et al., 2020).

The importance of these cloud-radiative effects to the SEB
varies geographically as dictated by surface albedo. In locations of
high surface albedo, such as northern Greenland and the high-
elevation accumulation zone, the SEB is resilient to changes in
incoming shortwave radiation and, rather, longwave cloud-
radiative effects dominate (Wang B. et al., 2018, Wang et al.,
2019; Lenaerts et al., 2019 and references therein). In locations of
lower surface albedo, such as southern Greenland and the low-
elevation ablation zone, there is a greater sensitivity to changes in
incoming shortwave radiation and, consequently, shortwave
cloud-radiative effects dominate (Wang W. et al., 2018, Wang
et al., 2019; Lenaerts et al., 2019 and references therein; Izeboud
et al., 2020). This physical framework explains the seemingly
disparate observational results showing that suppressed cloud
cover over southern Greenland during frequent blocking events
drives GrIS mass loss (Hofer et al., 2017) while also pointing to
the critical role of moisture transport and the presence of low-
level clouds in generating surface melt at high elevations during
extensive melt events (Nghiem et al., 2012; Bennartz et al., 2013;
Neff et al., 2014; Van Tricht et al., 2016; Gallagher et al., 2018;
Tedesco and Fettweis, 2020).

The impact of each radiative term on the SEB is further
complicated by the fact that the surface albedo of the ice sheet
is not static with time. In what is referred to as the ice-albedo
feedback, surface melt lowers albedo of ice sheet, first by
accelerating snow metamorphism, then, in locations of
seasonal snowpack, by uncovering lower-albedo glacial ice
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(Tedesco et al., 2011; Box et al., 2012; Lenaerts et al., 2019 and
references therein). Consequently, the influence of incoming
shortwave radiation on the SEB increases following Greenland
blocking onset (Tedesco et al., 2011; Tedesco et al., 2013; Tedesco
et al., 2016) and the efficacy of shortwave cloud radiative effects is
maximized at the heart of the melt season (Wang et al., 2019).

A related mechanism whereby Greenland blocking impacts
the GrIS is by inhibiting snowfall that would otherwise act to
increase both accumulation and surface albedo, thus driving
below-normal SMB across portions of the ice sheet that are
located within the ridge (Tedesco et al., 2011; Box et al., 2012;
Tedesco and Fettweis, 2020). However, the anomalous moisture
transport that accompanies Greenland blocking (e.g., Barrett
et al., 2020; see also Figure 1) can also cause significant
positive SMB anomalies in some situations. Mattingly et al.
(2018) show that while strong moisture transport to western
Greenland during the melt season is associated with increased
melt in the ablation zone, these losses are partially compensated
by snowfall in the accumulation zone, while anomalous moisture
transport during non-summer months typically produces
anomalous snowfall throughout the GrIS, especially in
southeast Greenland. This demonstrates that the orientation of
blocking anticyclones relative to the topography of the GrIS and
their seasonal timing exert critical controls on SMB response.

Arctic Moisture Intrusions: Impacts on Sea
Ice and Relationships With Blocking
Numerous studies have found that Arctic moisture intrusions
cause sea ice melt or impeded growth. During the cold season,
moisture intrusions trigger transitions from the “radiatively
clear” to “opaquely cloudy” atmospheric states observed in
Arctic field campaigns (Stramler et al., 2011; Woods and
Caballero, 2016; Graham et al., 2017b; Cohen et al., 2017;
Kayser et al., 2017; Ali and Pithan, 2020). Downwelling
longwave radiation is enhanced by anomalous cloud cover and
elevated water vapor amounts during subsequent days, which,
along with the insulating effect of enhanced snow accumulation
during the storms, reduces sea ice growth and may cause the sea
ice edge to retreat (Park et al., 2015b; Merkouriadi et al., 2017;
Merkouriadi et al., 2020; Persson et al., 2017; Graham et al., 2019).
During summer, cyclones are less intense and the warming effect
of moisture intrusions may be tempered by their associated
negative shortwave cloud radiative effect, but episodes of
warm, moist air advection have nevertheless been shown to
force sea ice melt (Graversen et al., 2011; Rinke et al., 2019a),
with case studies demonstrating the formation of a moist
inversion and fog layer over sea ice that enhances
downwelling longwave radiation and turbulent heat flux
(Tjernström et al., 2015; Tjernström et al., 2019; You et al.,
2020). Synoptic storms and moisture intrusions have been
found to coincide with the initial melt of sea ice in early
summer (Persson, 2012; Else et al., 2014; Hegyi and Deng,
2017) and the period of rapid warming during the Arctic
springtime transition (Long and Robinson, 2017). Several
studies have found correlations between enhanced winter and
spring poleward moisture transport, increased longwave

radiation from cloud cover, earlier sea ice melt onset, and
decreased sea ice cover during the subsequent September
annual minimum (Kapsch et al., 2013; Kapsch et al., 2014;
Kapsch et al., 2016; Kapsch et al., 2019; Park et al., 2015a; Cox
et al., 2016; Mortin et al., 2016; Cao et al., 2017), although Choi
et al. (2014) and Sedlar (2018) find that absorbed shortwave
radiation absorption likely plays an important preconditioning
role in spring and early summer as well. Winter and spring
moisture intrusions are most frequent through the Atlantic sector
of the Arctic (Yang and Magnusdottir, 2017; Messori et al., 2018;
Hao et al., 2019; Hong et al., 2020; Papritz and Dunn-Sigouin,
2020).

The frequent recent occurrence of atmospheric blocking
patterns alongside moist intrusions and warm extremes in the
Atlantic and Pacific sectors shows that these circulation features
are often closely related, and that blocking also influences sea ice
evolution. Anticyclonic flow patterns over the Arctic have been
linked to anomalously low summer minimum sea ice extent (Ogi
and Wallace, 2012; Bellefamme et al., 2015; Ding et al., 2017;
Wernli and Papritz, 2018; Rinke et al., 2019a), to extreme early sea
ice melt in the Baffin Bay–Davis Strait–Labrador Sea sector in
spring 2013 (Ballinger et al., 2018), and to negative sea ice extent
anomalies around Alaska in all seasons (McLeod et al., 2018).

Several recent studies have detailed the complex circulation
features and thermodynamic processes that produce episodes of
extreme Arctic warmth, including interactions between cyclones,
blocking, and moisture transport as well as the coupling between
transport from lower latitudes and intra-Arctic thermodynamic
processes. Papritz and Dunn-Sigouin (2020) analyzed a
climatology of all extreme moisture transport events during
winter, finding that planetary-scale anticyclones and synoptic-
scale cyclones interact to produce the most extreme events, as
blocks deflect the tracks of cyclones poleward and establish a
strong poleward transport in the interaction zone between the
block and upstream cyclones. During summer, Wernli and
Papritz (2018) found that episodic upper-level Arctic
anticyclones enhance sea ice reduction, and that extratropical
cyclones injecting extratropical air masses with low potential
vorticity into the Arctic are responsible for the formation of these
anticyclones (in agreement with the extratropical-to-polar
transport along moist isentropes described by Laliberté and
Kushner (2014)). Binder et al. (2017) examined the dynamic
and thermodynamic evolution of a winter 2015–16 extreme
Arctic warm event in detail, finding that three air streams
with distinct origins and warmed by different processes
contributed to the warm episode: warm low-level air of
subtropical origin, initially cold low-level air of polar origin
heated by surface fluxes, and descending air heated by
adiabatic compression. These airstreams were transported
poleward by a low-level jet positioned between an anticyclone
and a series of cyclones, with further warming by latent heating in
a region of continuous warm conveyor belt ascent into the upper
part of the anticyclone. Papritz (2020) extended this type of
Lagrangian air mass evolution analysis to all Arctic lower-
tropospheric warm (and cold) extreme events and found that
blocking plays a critical role in generating warm extremes in both
summer and winter. Subsidence from the Arctic middle
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troposphere in blocking anticyclones was found to be the most
important warming process, with anomalous blocking in the
Barents, Kara, and Laptev Seas favoring warm extremes during
winter and blocks located in the high Arctic during summer,
when subsidence within blocks is particularly important for
warming. Poleward transport of already warm air masses
contributes around 20% to warming during both summer and
winter, while about 40% of the air masses originate from the
Arctic during winter and are heated diabatically by ocean-
atmosphere fluxes in marine cold air outbreaks.

These recent studies expand upon and complicate the
traditional view that cyclonic moisture intrusions directly
transport already warm, moist air from lower latitudes to
warm the Arctic and impact sea ice. It instead appears likely
that lower latitude atmospheric processes contribute to Arctic
warm events through complex planetary- and synoptic-scale
dynamics that involve two-way interactions between the Arctic
and lower latitudes in response to initial extratropical forcing,
with critical contributions to final warming from intra-Arctic
coupling between ocean and land surfaces, the atmospheric
boundary layer, and the middle and upper troposphere. A
further question concerns the vertical distribution of moisture
transport in the Arctic atmosphere and its impact on
amplification and near-surface warming. Corridors of direct
moisture advection from the mid-latitudes to the Arctic tend
to ascend from the surface to the middle troposphere along moist
isentropes (Laliberté and Kushner, 2014; Wernli and Papritz,
2018; Hao et al., 2021), and Feldl et al. (2020) find that greater
warming and moistening of the upper troposphere does not
directly contribute to Arctic amplification as it does not affect
the near-surface lapse rate feedback. However, transport of moist
air masses from the mid-latitude near-surface layer to the Arctic
middle and upper troposphere likely still contributes to Arctic
warming indirectly, as latent heat release aids the formation of
blocking anticyclones (Pfahl et al., 2015; Grams and
Archambault, 2016; Zhang and Wang, 2018; Sánchez et al.,
2020) that deflect cyclones poleward (Papritz and Dunn-
Sigouin, 2020) and warm the lower troposphere through
subsidence (Laliberté and Kushner, 2014; Ding et al., 2017;
Wernli and Papritz, 2018; Papritz, 2020).

Further research is needed to clarify the complex
interrelationships between cyclone-driven moisture intrusions,
blocking, and sea ice in a rapidly changing Arctic, along with the
contribution of these phenomena to overall Arctic amplification.
These investigations should address the seasonality of cyclonic
moisture intrusions and blocking and their role in Arctic
warming, as Arctic-amplified warming is most pronounced
during winter, while the warming contribution of subsidence
within anticyclones is maximized during the summer according
to Papritz (2020). Arctic blocking is less studied than in the mid-
latitudes, and future studies should ensure that any blocking
detection algorithms employed in this emerging area of research
are suitable to detect Arctic blocks, which are generally weaker
than their mid-latitude counterparts and may not be detected by
geopotential height-based algorithms (see Blocking Definition,
Identification, and Northern Hemisphere Climatology), that
require poleward westerlies (Tyrlis et al., 2020). The vertical

structure of moisture transport should be carefully examined
in relation to blocking and influences on warming, as Arctic
moistening in lower levels likely contributes directly to the lapse
rate feedback, while middle- and upper-tropospheric moisture
transport may contribute to warming through more indirect
pathways including latent heat release and blocking
development, and/or may act to dampen Arctic amplification
due to a negative upper-level lapse rate feedback (Feldl et al.,
2020; Hao et al., 2021). The relative importance of and
relationships between lower-latitude and within-Arctic
processes during Arctic warming events should also be further
investigated. Recent studies reviewed here show that a large
proportion of air masses originate from within the Arctic
during these warm events, but the thermodynamic processes
occurring within local and remote air masses to produce
warming are linked to extra-Arctic atmospheric circulation
features, thus the interactions between variability in the
extratropical storm tracks and Arctic circulation extremes are
an important avenue for future research. These questions
regarding local and remote drivers of episodes of anomalous
Arctic warming mirror the broader debate over local and remote
influences on Arctic amplification, and future research should
assess the overall significance of remotely forced cyclonic
moisture intrusions and blocking to Arctic-amplified warming,
including their interactions with mechanisms that have
traditionally been conceptualized as intra-Arctic processes
such as the ice-albedo, lapse rate, and cloud and water vapor
feedbacks.

TROPICAL-HIGH LATITUDE
SUBSEASONAL TELECONNECTIONS

Intraseasonal Influences on Extratropical
Rossby Waves
In order to understand the potential future evolution of high-
latitude circulation and its association with Arctic amplification,
it is critical to understand lower-latitude and tropical processes.
Tropical upper-tropospheric heating produced by thunderstorms
in the convectively active region of the leading mode of
atmospheric subseasonal variability, the Madden–Julian
Oscillation (MJO; Madden and Julian, 1971; Madden and
Julian, 1972; Madden and Julian, 1994), has been found to be
an effective source of Rossby wave generation to the extratropics
and Arctic (Hoskins and Karoly, 1981; Sardeshmukh and
Hoskins, 1988; Bladé and Hartmann, 1995; Jin and Hoskins,
1995; Hendon and Salby, 1996). To generate these Rossby waves,
diabatic heating produced by MJO deep convection leads to a
divergent component of the upper-tropospheric tropical and
subtropical wind field. That divergent wind then advects
absolute vorticity toward the poles and leads to the formation
of a wave train (Kiladis and Weickmann, 1992; Knutson and
Weickmann, 1987; Sardeshmukh and Hoskins, 1988; Hendon
and Salby, 1994; Higgins and Mo, 1997; Matthews et al., 2004;
L’Heureux and Higgins, 2008; Lin et al., 2009; Seo and Son, 2012;
Riddle et al., 2013) that can be traced (Seo and Lee, 2017; Barrett,
2019). The Rossby wave train’s subtropical origins depend on the
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longitude of the MJO convection, and the origin of the wave
train can move east, in tandem with the diabatic heating source
(Johnson and Feldstein, 2010; Hamill and Kiladis, 2014; Stan
et al., 2017). The Rossby wave source region can extend across
nearly the entire tropical Indian Ocean and the Pacific Ocean
west of 180° (Lukens et al., 2017), and that allows the MJO to
modulate tropical cyclones in the Atlanitc Ocean (Barrett and
Leslie, 2009). One proposed physical mechanism for Rossby
wave generation is as follows: when the MJO convection is over
the Indian Ocean, horizontal convergence in the tropics and
the advection of absolute vorticity in the subtropics develops a
cyclonic anomaly over southeast Asia. As MJO convection
moves eastward, a Rossby wave train departs the subtropics in
the exit region of the subtropical Pacific jet (Lukens et al.,
2017). Another proposed physical mechanism for Rossby wave
generation involves modulation of the local Walker and
Hadley cell circulations (Schwendike et al., 2014) over the
Pacific. The subtropical jet over the Pacific is enhanced in
regions of anomalous upper-tropospheric (anticyclonic;
Roundy, 2012) divergence located poleward of MJO
convection (Matthews and Kiladis, 1999; Moore et al.,
2010). This jet shifts eastward with the MJO propagation,
and regions of enhanced convection strengthen the local
Hadley circulation, and as upper-tropospheric flow
accelerates poleward due to pressure gradient forces,
geostrophic adjustments yield troughing downstream of
ridging, thereby producing midlatitude Rossby waves that
propagate poleward across the Pacific Ocean in both the

Northern and Southern Hemispheres (Schwendike et al.,
2021).

Because of this important influence, predicting the future state
of high-latitude circulation, precipitation, temperature, and
cryosphere (snow and ice) depends on the correctly capturing
the temporal evolution and geographical distribution of tropical
convection of the MJO (Jones et al., 2004; Marshall et al., 2011;
Riddle et al., 2013; Rodney et al., 2013; Goss and Feldstein, 2015;
Tseng et al., 2018; Lin and Brunet, 2018; Zheng et al., 2019; Zheng
and Chang, 2019; Zheng and Chang, 2020; Tseng et al., 2020).
Indeed, the broader topic of polar amplification of surface
temperature and precipitation has been linked to poleward-
propagating Rossby waves excited by MJO-related tropical
convection (Figure 3) (Lee et al., 2011). Furthermore, there is
evidence that many of the blocked atmospheric circulations in the
Arctic that were reviewed in Blocking Definition, Identification,
and Northern Hemisphere Climatology are have connections to
tropical convection on the subseasonal time scale (Henderson
et al., 2016; Henderson and Maloney 2018), and even the
moisture pathways and atmospheric rivers reviewed in
Blocking Definition, Identification, and Northern Hemisphere
Climatology and Arctic Moisture Intrusions: Impacts on Sea Ice
and RelationshipsWith Blockingmay also have connections to the
MJO on the subseasonal time scale (Mundhenk et al., 2016).

It remains an open question whether the extratropical Rossby
wave train depends more on characteristics of the source region
or either the tropical or extratropical flow (Roundy, 2021).
Regardless, the Rossby wave response seems to be strongest

FIGURE 3 | Schematic representing the sequence of processes by which subseasonal tropical convection can influence the poleward and eastward propagation
of Rossby waves, resulting in an Arctic circulation response.
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when the MJO diabatic heating structure resembles a dipole but
with asymmetries that are not yet fully understood (Lin and
Brunet, 2018). Moreover, stronger MJO events do not necessarily
produce stronger extratropical responses or in the same location
as weaker MJO events (Lafleur et al., 2015). Another uncertainty
comes in the timing of the lagged response, with studies
suggesting the lag can be anywhere from 1 to 3 weeks
(Higgins et al., 2000; Lin and Brunet, 2009; Riddle et al., 2013;
Rodney et al., 2013; Schreck et al., 2013; Matsueda and Takaya,
2015; Seo et al., 2016; Hu et al., 2019).

Approximately 30% of the variability of the subseasonal
upper-tropospheric extratropical circulation can be linked with
MJO-induced teleconnections (Figure 3) (Matthews et al., 2004;
Seo and Son, 2012; Seo et al., 2016). One of the critical
consequences of the diabatic heating of the MJO is that it is
able to produce long-lasting responses in the high latitudes that
last much longer than their tropical forcing (Matthews et al.,
2004; Kim et al., 2006; Branstator, 2014; Franzke et al., 2019). This
suggests the low-frequency evolution of theMJO in the future will
affect many of the processes responsible for Arctic amplification.
One other important open question regarding MJO-linked
Rossby waves centers on seasonality. There is much research
that suggests the MJO is strongest in extended boreal winter
(November-May; see reviews by Zhang, 2005 and Zhang et al.,
2013). However, in extended boreal summer months (June-
September), the tropical intraseasonal oscillation exhibits
multiple propagation characteristics: east and north over the
Indian monsoon region (Murakami and Nakazawa, 1985;
Hartmann and Michelsen, 1989; Gadgil and Srinivasan, 1990)
and northwest over the western North Pacific Ocean (Murakami,
1980; Lau and Chan, 1986; Chen and Murakami, 1988). This
change in propagation has led to the MJO being referred to as the
boreal summer intraseasonal oscillation (BSISO; Krishnamurti
and Subrahmanyam, 1982; Yasunari, 1979). The ability of the
BSISO to act as a Rossby wave source into the midlatitudes
remains significantly understudied when compared to the MJO
(Wang et al., 2020a; Wang et al., 2020b). Thus, studies of Arctic
amplification in summer months should also consider the
teleconnected influence from the BSISO in the tropics, just as
studies of Arctic amplification in winter should consider the
influence from the tropical MJO.

Despite the remaining questions on the seasonality and
strength of the MJO-driven Rossby wave trains, it is very clear
that the MJO modulates a wide range of weather phenomena
located in the tropics, the mid-latitudes and even in the high
latitudes.

Subseasonal Influence on Mid-to-High
Latitude Circulation and Surface Variables
In addition to the Rossby wave pathways discussed in
Intraseasonal Influences on Extratropical Rossby Waves,
another primary way by which the MJO influences surface
variables is by strongly modulating the extratropical North
Atlantic Oscillation (NAO) and Pacific–North American
(PNA) pattern. The PNA and NAO are two of the leading
modes of Northern Hemisphere extratropical variability

(Blackmon et al., 1984; Hurrell et al., 2001). Over the Pacific,
the PNA pattern has been found to be related to the MJO. The
MJO’s modulation of the PNA pattern is caused by two Rossby
wave sources: a negative source north of MJO-enhanced
convection over the Indian Ocean and a positive source north
of the MJO-enhanced convection over the western Pacific Ocean
(Seo and Lee, 2017). When the MJO convection is in the Pacific
Ocean, it tends to excite the positive PNA phase, which translates
into above-normal geopotential heights over western North
American, below-normal heights over eastern North America
(Higgins and Mo, 1997; Mori andWatanabe, 2008; Franzke et al.,
2011), and colder-than-normal temperatures over the
northeastern United States (Leathers et al., 1991).

Flatau and Kim (2013) noted that the MJO forces the annular
modes (the AO and NAO) on intraseasonal time scales. The MJO
and NAO have a statistically significant time-lagged relationship.
Between 7 and 10 days after MJO convection is over the Indian
Ocean (phases 2–3), the probability of a positive NAO is
increased significantly from the background climatology.
Similarly, between 7 and 10 days after MJO convection is over
the western Pacific Ocean (phases 6–7), the probability of a
negative NAO is increased significantly (Cassou, 2008; Lin
et al., 2009; Yadav and Straus, 2017). This pathway, called by
Barnes et al. (2019) the “tropospheric pathway”, is one way that
the MJO can influence the NAO. Another mechanism is via the
polar stratosphere, and that is not reviewed here, beyond noting
that the tropospheric pathway may depend on the prevailing
direction of tropical stratospheric winds of the quasi-biennial
oscillation (QBO) (when QBO is westerly, the MJO-NAO
tropospheric pathway is more robust; Barnes et al., 2019; Feng
and Lin, 2019). A positive NAO is associated with anomalous
ridging over the eastern United States and North Atlantic Ocean
and thus with warmer surface air temperatures and less
precipitation (Hurrell et al., 2001; Hurrell et al., 2003).
Conversely, a negative NAO is associated with anomalous
troughing over the eastern United States and North Atlantic
Ocean and thus colder surface air temperatures and more
precipitation. Thus, above-average surface temperatures and
below-normal precipitation can be expected over the eastern
United States after MJO convection is over the Indian Ocean.
Similarly, colder temperatures and above-normal precipitation
can be expected after MJO convection is over the western Pacific
Ocean.

TheMJO’s impacts on surface weather can be explained by the
extratropical circulation anomalies forced by the tropical MJO
convection (Figure 3). Zheng et al. (2018) noted that impacts on
extratropical sea-level pressure, and thereby cyclone activity, may
be greatest over the eastern North Pacific, the southeastern
United States, Canada, and the north-central Atlantic Ocean.
Temperature impacts, however, could be more significant over
the eastern U.S. (Zheng and Chan, 2019). The anomalies in
pressure and temperature have been definitively linked to the
Rossby wave trains excited by the MJO, given that the upper-
tropospheric circulation anomalies are equivalent barotropic
(Zheng and Chan, 2019), thereby allowing any enhancement
or suppression of the wind field to cause temperature advection.
Zheng and Chan (2019) conclude: “the upper-level Rossby wave
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train is very important as it connects the MJO and extratropical
surface weather anomalies.”

One of the most important ways in which the MJO’s
influence extends to the Northern Hemisphere high
latitudes is via its influence on surface air temperature (Lin
and Brunet 2009; Yao et al., 2011; Yoo et al., 2011; Yoo et al.,
2012; Zhou et al., 2012; Rodney et al., 2013; Johnson et al.,
2014; Yoo et al., 2014; Lin 2015; Oliver 2015) and precipitation
(Bond and Vecchi 2003; Jeong et al., 2008; Lin et al., 2010;
Becker et al., 2011; He et al., 2011; Baxter et al., 2014; Jones and
Carvalho 2014). Vecchi and Bond (2004) found that
geopotential height, specific humidity, and surface air
temperature in the Arctic varied by phase of the MJO, while
Lin and Brunet (2009) confirmed a similar response of surface
air temperature in Canada. Modulation of the Arctic
atmosphere specifically, by phase of MJO has also been
documented (L’Heureux and Higgins 2008; Yoo et al.,
2011), while Yoo et al. (2012) further confirmed the MJO-
driven, poleward propagating wave train drove changes in the
Arctic overturning circulation, heat flux, and downward
infrared radiation. Barrett et al. (2015), Klotzbach et al.
(2016), Henderson et al. (2017), and Barrett (2019) noted
that the MJO’s influence on circulation and temperature
extends to snowfall, and that for the eastern parts of North
America, snowfall, snow depth change, and snow water
equivalent change all tended to be above normal (or
snowier) after MJO convection in phases 8 and 1. This
relationship between the MJO and NAO appears to be
strongest when the El Niño–Southern Oscillation (ENSO) is
in negative (La Niña) phase (Roundy et al., 2010), and as
discussed above, when the stratospheric QBO is in its easterly
phase (Yoo and Son, 2016).

In addition to documented relationships between MJO and
high-latitude temperature and precipitation tendencies via
modulation of large-scale circulation, the MJO’s influence has
already been found to extend to Arctic sea ice (Henderson et al.,
2014), by projecting onto the Arctic atmosphere in both boreal
winter and summer seasons. Indeed, sea ice concentration is
lower in both the Barents and Kara Seas one to two weeks after
convection over the Maritime Continent, as a result of stationary
wave interference and subsequent Arctic warming (Goss et al.,
2016). Variability in sea ice concentration by phase of MJO was
supported by corresponding lower troposphere atmospheric
anomalies, with evidence of sea ice modulation occurring
regionally. Daily changes in Northern Hemisphere (NH)
spring snow depth by phase of MJO was explored by Barrett
et al. (2015), with statistically significant depth anomalies found
in March, april and May for both North America and Eurasia. In
October, correlations between patterns of snow water equivalent
(SWE) variability over Eurasia and mid-tropospheric
geopotential heights were largest during MJO phases 4–7,
indicating that tropical convection anomalies over the Indian
Ocean and Maritime continent had the most impact on October
circulation and snow variability (Henderson et al., 2017). These
studies therefore provide additional evidence for connections
between the tropics and the extratropics on subseasonal
timescales.

FUTURE IMPLICATIONS FOR BLOCKING,
MOISTURE TRANSPORT, SUBSEASONAL
VARIABILITY, AND ARCTIC
AMPLIFICATION

Arctic Amplification &Northern Hemisphere
Blocking
There are several working hypotheses for how Arctic
Amplification may influence mid-latitude weather extremes,
and we refer the reader to existing reviews of the subject for a
more thorough examination of the mechanisms behind both
winter (Cohen et al., 2014; Cohen et al., 2020) and summer
(Coumou et al., 2018) circulation response to Arctic change.
Here, we briefly summarize some of these theoretical frameworks
as they pertain to blocking. One prominent hypothesis to explain
changes in mid-to high-latitude atmospheric circulation follows
from the observation that Arctic amplification weakens the near-
surface meridional temperature gradient, thus reducing the
strength of the jet stream aloft (Francis and Vavrus, 2012;
Francis and Vavrus, 2015; Cvijanovic and Caldeira, 2015;
Deser et al., 2015; Vavrus et al., 2017). It is proposed that,
under a weaker jet, Rossby waves become more amplified, and
their westward progression slows, creating conditions that are
conducive to blocking (Francis and Vavrus, 2012). It has also
been argued that changes in snow cover or sea ice extent can exert
an influence on blocking by altering the stationary wave pattern,
thus bringing the background state of the atmosphere in certain
regions closer to blocked conditions (Matsumura and Yamazaki,
2011; Wu et al., 2013; Cohen et al., 2014; Kim et al., 2014;
Nakamura and Huang, 2018). Regarding winter circulation
response, research efforts have also placed focus on a
stratospheric pathway, where reduced sea ice along the
Siberian coast may work in concert with increased snow cover
over Eurasia in fall to elicit an increase in the upward propagation
of Rossby waves that then disrupts the stratospheric polar vortex
and exerts a downward influence on the troposphere, causing a
negative AO by late winter (Cohen et al., 2007; Kim et al., 2014;
Sun et al., 2015; McKenna et al., 2018; Henderson et al., 2018,
Siew et al., 2020). This is relevant to blocking as the negative AO is
associated with increased blocking throughout the Northern
Hemisphere (Thompson and Wallace, 1998; Hassanzadeh and
Kuang, 2015). In summer, it is thought that the enhanced thermal
contrast between land and ocean under Arctic amplification
increases the formation of wave guides that can encourage
wave-amplifying resonance between free and forced Rossby
waves, in turn promoting high-amplitude, persistent weather
patterns such as those associated with atmospheric blocking
(Coumou et al., 2018 and references therein).

Observed and Projected Trends in Northern
Hemisphere Blocking, the Greenland Ice
Sheet, and Poleward Moisture Transport
Documenting observational support of the theoretical linkages
between Arctic amplification and blocking outlined above is an
active area of research. While there is no current consensus about
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observed trends in overall Northern Hemisphere blocking
(Woollings et al., 2018), regional trends have been
documented despite differences among both blocking metrics
and datasets (Barnes et al., 2014).

An analysis of Local Wave Activity has suggested increases in
such activity correspond to increases in blocking (Martineau
et al., 2017), where cyclonic events are most influential for the
development of high-latitude blocks (e.g., Woollings et al., 2018).
Martineau et al. (2017) show an increase in local wave amplitudes
(i.e., waviness) over East Asia, noting, however, trends in
teleconnections such as El Nino/Southern Oscillation (ENSO),
the Arctic Oscillation (AO)/North Atlantic Oscillation (NAO),
and Pacific-North American teleconnections (PNA) may explain
this connection (e.g., Cohen et al., 2012; Kosaka and Xie 2013). In
particular, the negative phase of the AO/NAO is associated with
both an increased frequency and higher latitude of blocking highs
throughout the Northern Hemisphere (Thompson and Wallace,
1998; Hassanzadeh and Kuang, 2015).

Belleflamme et al. (2015) and Ballinger et al. (2014) show that
increased anticyclonic activity over the Beaufort Sea and
Greenland regions from 1980–2014 may have both
contributed to and been the result of Arctic sea ice loss. In
particular, the period of 2007–2012 experienced significant
anticyclonic circulation anomalies in these regions, which
cannot be attributed to either natural climate variability or
anthropogenic climate change (Belleflamme et al., 2015;
Ballinger et al., 2014; and references therein). In their review
paper, Woollings et al. (2018) indicate historical increases in JJA
blocking, depending on the metric used, particularly over
Greenland and the North Atlantic as well as the Bering Sea
during the 1958–2012 period.

GCMs included in the Coupled Model Intercomparison
Project phase 3 (CMIP3) and phase 5 (CMIP5)
intercomparisons have suggested an overall decrease in
blocking frequency in response to climate change in the
Northern Hemisphere (e.g., Barnes et al., 2012; Dunn-Sigouin
and Son, 2013; Matsueda and Endo, 2017). Most CMIP5 models
qualitatively simulate the blocking climatology locations, but
underestimate blocking frequency under the RCP8.5 scenario
(Dunn-Sigouin and Son, 2013). However, the trends appear to
vary both regionally and seasonally. Kennedy et al. (2016) show a
decrease in blocking over Eurasia, which is consistent with
findings from other studies (e.g., Masato et al., 2013a; Hanna
et al., 2018a); Woollings et al., 2018. Under the RCP8.5 scenario,
there will likely be a decrease in blocking frequency in both the
North Atlantic and North Pacific in fall and winter (Dunn-
Sigouin and Son, 2013). Dunn-Sigouin and Son (2013) also
show an increase in Ural blocking in future scenarios,
although this result is not robust, as described in Woollings
et al. (2018). Interestingly, they suggest an increase in European
blocking. Additionally, the spatial extent of blocking events is
expected to increase, where this increase is greatest for summer
blocking (Nabizadeh et al., 2019).

More recently, there has been significant improvement in
blocking representation from CMIP5 to CMIP6, though the
extent of this improvement still remains dependent on
individual models, selected blocking metrics, regions, and

seasons (e.g., Davini and D’Andrea, 2020; Schiemann et al.,
2020; Simpson et al., 2020). For example, Simpson et al.
(2020), Supplementary Information report that overall CMIP6
models appear to better represent the observed spatial
climatology compared to CMIP5 although systematic biases in
the mean climate state maybe the cause of readily apparent
underestimation of wintertime European blocks, and under-
(over-)estimation of summer Ural (Eastern Russia) blocking
frequency. Similarly, Davini and D’Andrea (2020) confirm the
improved overall representation compared to CMIP3. Current
CMIP6 projections suggest an overall decrease in blocking more
generally in winter and summer, with possible increases in the
(summer) Ural and (winter) western North American blocking
(Davini and D’Andrea, 2020). Schiemann et al. (2020) report that
the regional CMIP6 blocking bias magnitude is sensitive to the
blocking metric used.

Given the impact on GrIS SMB, there is a clear motivation to
understand long-term variability in Greenland blocking
frequency. On an interannual basis, blocking frequency over
Greenland has been shown to be strongly related to the North
Atlantic Oscillation (NAO). The frequency of blocking highs over
Greenland is greater when the NAO is in its negative phase,
i.e., when the difference between its two pressure centers, the
Azores and Iceland, is minimized (Hanna et al., 2014; Hanna
et al., 2015; Hanna et al., 2018a; Hofer et al., 2017). As such, both
the NAO and Greenland blocking have been linked to GrIS melt
variability, with the latter explaining more of the variance in
surface melt (Mote, 1998a; Hanna et al., 2013; McLeod and Mote,
2016).

A growing body of work has highlighted an increase in
summer Greenland blocking over the past 2 decades,
particularly as measured by the GBI (e.g., Hanna et al., 2016;
Hanna et al., 2018a; Hanna et al., 2018b; McLeod andMote, 2016;
Barrett et al., 2020; Wachowicz et al., 2021). Wachowicz et al.
(2021) confirmed this summer increase using a 5-years running
mean of blocking frequency as measured using both geopotential-
height-reversal-based and potential-vorticity-based blocking
indices. As one might expect given relationship outlined
above, this increase in blocking frequency has coincided with a
period of a more negative NAO conditions (Fettweis et al., 2013;
van Angelen et al., 2014; Bevis et al., 2019), all of which has
occurred against a backdrop of dramatic sea ice and snow cover
loss (Derksen and Brown, 2012; Cohen et al., 2014; Pithan and
Mauritsen, 2014; Stroeve and Notz, 2018). The coincident nature
of these events has spurred interest in the possibility that the
change in circulation may be a feature of arctic amplification.

Several studies have invoked either declining sea ice or snow
cover as a potential explanation for anomalous anticyclonic
conditions over Greenland. A collection of modeling and
observational studies has demonstrated anomalous anticyclonic
conditions over Greenland in years of low sea ice extent (Screen,
2013; Wu et al., 2013; Petrie et al., 2015; Liu et al., 2016),
suggesting the additional heat flux from the ice-free ocean
may act to enforce the ridge aloft. Supporting this theory, Wu
et al. (2013) tied the summer circulation response to sea ice in the
seas west of Greenland by tracking a stationary wave that
originates at the surface in spring then persists into summer.
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Alternatively, Overland et al. (2012) pointed to the observed
decline in Northern Hemisphere snow cover extent as a potential
explanation for a recent shift in Arctic circulation that features
positive pressure anomalies spanning the Arctic coastline of
North America, including all of Greenland. Later work
demonstrated a possible physical mechanism for this theory
where low spring Eurasian snow cover extent increases the
poleward propagation of Rossby waves which acts to
decelerate the polar jet and encourage a negative AO
(Matsumura et al., 2014)—conditions that are associated with
increased blocking frequency (Thompson and Wallace, 1998;
Hanna et al., 2014; Hanna et al., 2015; Hanna et al., 2018b;
Hassanzadeh and Kuang, 2015).

Collectively, GCMs from CMIP3 through CMIP6 have
consistently projected a decline in North Atlantic blocking in
both winter and summer under future climate scenarios (Davini
and D’Andrea, 2020; Masato et al., 2013b; Hanna et al., 2018a).
However, GCMs generally fail to adequately represent blocking
frequency and duration (Vial and Osborn, 2012; Woollings et al.,
2018) and, critically, historical GCM simulations fail to capture
the recent positive trend in summertime Greenland blocking,
undermining confidence in projections of future blocking in this
region (Davini and D’Andrea, 2020; Hanna et al., 2018a)
(Figure 4). This underrepresentation carries significant
implications, as accurate representation of regional circulation
over Greenland is essential for GrIS SMB projections. Indeed,
underestimation of GrIS SMB loss is a primary contributor to the
negative bias in GCM projections of sea-level rise to date (Slater
et al., 2020). Furthermore, a recent idealized modeling analysis
found that a continuation of the recent increase in Greenland
blocking would cause SMB losses to bemore than twice than what
is currently estimated from GCM projections (Delhasse et al.,
2018).

An increasing trend in episodes of warm and moist air
intrusion into the Arctic has been observed. Several episodes

of extreme winter warmth have extended latitudinally to the
North Pole in recent years (Park D. S. R. et al., 2015; Cullather
et al., 2016; Moore, 2016; Lee H. J. et al., 2017; Graham et al.,
2017a; Binder et al., 2017; Kim et al., 2017; Kohnemann et al.,
2017), and southerly winds contributed to the appearance of
anomalous polynya north of Greenland during February–March
and August–September 2018 (Moore et al., 2018; Ludwig et al.,
2019; Lei et al., 2020). These extreme warm events are often
coupled to Ural and Scandinavian blocking patterns (Luo et al.,
2017; Rinke et al., 2017; Luo et al., 2019), and their frequent
recurrence in recent winters may be linked to the increased
incursion of warm, salty Atlantic Water—known as
“Atlantification”—in the Atlantic sector of the Arctic Ocean
(Alexeev et al., 2017; Polyakov et al., 2017; Polyakov et al.,
2020a; Polyakov et al., 2020b; Barton et al., 2018; Tsubouchi
et al., 2021). Dramatic sea ice decline and ocean warming have
also been observed in the Pacific sector of the Arctic during recent
years, alongside persistent atmospheric blocking and southerly
moisture intrusions (Lee S. et al., 2017; Overland et al., 2018;
Ballinger et al., 2019; Tachibana et al., 2019; Polyakov et al.,
2020a; Huntington et al., 2020; Kodaira et al., 2020; Thoman et al.,
2020).

Model simulations of future climate states indicate that
poleward moisture transport into the Arctic will increase in
the future, while dry static energy transport will decrease due
to a decreased temperature gradient between the Arctic and lower
latitudes (Hwang et al., 2011; Yoshimori et al., 2014b; Yoshimori
et al., 2017; Graversen and Burtu, 2016; Feldl et al., 2017; Feldl
et al., 2020; Graversen and Langen, 2019). In general, increased
poleward water vapor flux can be expected to contribute to
amplified Arctic warming through the greenhouse effect of
water vapor and clouds as well as latent heat release from
condensation. However, recent studies reviewed in Arctic
Circulation Features: Blocking, Moisture Transport, and
Coupling With the Cryosphere suggest that the warming

FIGURE 4 | Time series of June, July and August Greenland Blocking Index 1 (dashed red line) and Greenland Blocking Index 2 (solid red line) indices over
1950–2,100 as simulated by NCEP/NCAR Reanalysis 1 (red line), by 20CRv2c reanalysis (green line), and by ERA-20C reanalysis in blue as well as by all the CMIP5
models (gray lines) for which both RCP4.5 and RCP8.5 scenarios are available. For the CMIP5-based time series, the historical scenario is used over 1900–2005 and
both RCP4.5 and RCP8.5 afterward. A 20-years running mean has been applied to smooth the time series, and values have been normalized (average � 0 and
standard deviation � 1) using 1986–2005 as the reference period, from Hanna et al. (2018a).
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impact of increasing moisture flux will not be spatially and
temporally uniform, and will depend on the vertical structure
of water vapor transport as well as its interaction with the
atmospheric circulation. Further, changes in water vapor
transport from outside the Arctic will likely interact in
complex ways with changing within-Arctic hydroclimatological
conditions resulting from sea ice loss and ocean warming. The
influence of declining sea ice on cyclones, moisture transport, and
blocking, and in turn the feedbacks of these atmospheric
processes into sea ice and oceanic conditions, should be
studied further. For example, Kim and Kim (2017)
hypothesized that the increasing open water fraction from sea
ice decline will reduce the ocean-atmosphere temperature
gradient and suppress turbulent heat flux into the atmosphere,
which will serve to slow Arctic warming and enhance the role of
atmospheric heat and moisture transport from lower latitudes in
Arctic climate.

Future Trends in Tropical-To-Arctic
Teleconnections
High-latitude atmospheric circulation is strongly influenced by
lower-latitude processes, including those from the tropical and
subtropical Pacific, through the poleward propagation of Rossby
wave trains (e.g., Ding et al., 2014; Feng et al., 2017; Jiménez-
Esteve and Domeisen, 2018). In order to understand the potential
future evolution of the high-latitude circulation and its
association with Arctic amplification, it is necessary to
understand the future evolution of those lower-latitude
processes. Some studies suggest that recent Arctic
amplification could be at least partially attributed to enhanced
warm-air advection and moisture transport by Rossby waves
associated with an increase in the frequency of MJO activity over
the western Pacific and Maritime Continent (Lee et al., 2011; Yoo
et al., 2011; Yoo et al., 2012; Seo et al., 2016; Jiang et al., 2020).
However, there are more studies that examine changes in the
MJO (both historical and future) than changes in MJO-driven
teleconnections to the high latitudes. Here, we review aspects of
both changes to the MJO and its teleconnections.

The MJO is strongly influenced by the atmospheric mean state
in the tropics (Maloney and Hartmann, 2001; Inness and Slingo,
2003; Zhang and Dong, 2004; Maloney and Xie, 2013). Thus,
changes in tropical sea-surface temperatures, wind shear,
moisture availability, and stability driven by anthropogenic
global warming all have the potential to influence the MJO,
and by association, Arctic amplification. Some studies suggest
that the amplitude of the MJO may intensify and its variance
increase with increasing warming (Takahashi et al., 2011; Liu
et al., 2013; Schubert et al., 2013; Subramanian et al., 2014; Arnold
et al., 2015; Wolding et al., 2017; Haertel, 2018; Rushley et al.,
2019). Others suggest the MJO may become spatially more
expansive in the zonal direction, with greater surface
convergence, enhanced deep convection, faster eastward
propagation, and more heating (Caballero and Huber, 2010;
Arnold et al., 2013; Liu, 2013; Liu et al., 2013; Chang et al.,
2015; Song and Seo, 2016; Adames et al., 2017; Cui and Li 2019).
While most studies suggest a more intense MJO over the 21st

century, some suggest that an increase in tropical static stability
may weaken the MJO’s generation of Rossby waves (Bui and
Maloney, 2018; Bui and Maloney, 2019a) by weakening the wind
response. This weakening would have important implications for
Arctic amplification, since the divergent flow anomalies produced
by the MJO’s anomalous heating are the source for Rossby wave
generation into the extratropics (Sardeshmukh and Hoskins,
1988; Wolding et al., 2017; Maloney et al., 2019). Some
modeling results suggest that teleconnected impacts in the
Arctic may be weaker per unit of MJO precipitation anomaly
over the next several decades (Jiang et al., 2020). This is further
complicated because the MJO-Arctic link depends strongly on
complex, nonlinear changes in extratropical static stability, storm
track, North Pacific jet stream, and other aspects of the general
circulation that all impact the receivership state of the Arctic to
MJO teleconnections (Kang and Tziperman, 2018; Bui and
Maloney, 2019b; Jiang et al., 2020).

Given all this, many questions remain unanswered regarding
the role of tropical teleconnections and their impact on Arctic
amplification. The extent to which MJO can influence
atmospheric blocking is relatively understudied; however,
preliminary work suggests that not only does MJO affect
blocking frequency in particular at higher latitudes
(Henderson et al., 2016), the relationship is also influenced by
ENSO phase (Henderson et al., 2018). Future implications of this
tropical-to-Arctic Amplification linkage are further complicated
as studies disagree on projections of increased MJO precipitation
under warmer climates (e.g., Schubert et al., 2013; Rushley et al.,
2019). Moreover, few studies have examined either MJO
teleconnections, in general, or MJO-Arctic linkages in warmer
climates (e.g., Maloney et al., 2019; Jiang et al., 2020). More
research is needed to fully understand the complex, multi-layered
and non-linear processes that connect tropical and extratropical
atmospheric circulation, its interaction with atmospheric
blocking and moisture transport, and subsequent impacts on
and amplification of changing Arctic atmospheric and surface
variables.

Summary and Discussion
Arctic amplification is a fundamental feature of past, present, and
modeled future climate. However, the causes of this amplification
within Earth’s climate system are not fully understood. To date,
warming in the Arctic has been most pronounced in autumn and
winter seasons, with this trend predicted to continue based on
model projections of future climate. The intra-Arctic feedbacks
by which this is taking place are numerous and interconnected,
while extra-Arctic processes, in particular changes to large-scale
atmospheric circulation and moisture transport, are entangled
with these internal feedbacks in complex ways.

A question we pose is whether external forcing from the
tropics is appropriately considered in a discussion of Arctic
amplification. If one defines Arctic amplification in a manner
in which the Arctic specifies both the region in which the
enhanced warming is observed and also all feedbacks
involving amplification occur, then consideration of tropical
forcing would fall outside the discussion. However, if we
broaden the discussion to include mechanisms that import
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sensible and latent heat into the Arctic and thereby enhance local
longwave forcing, in addition to mechanisms that modulate
Arctic atmospheric circulation, triggering within-Arctic
feedbacks (e.g., ice-albedo, lapse rate), then inclusion of
forcing from lower latitudes becomes critical. We therefore
have reviewed forcings acting within and external to the Arctic
that lead to enhanced warming and cryospheric impacts in this
region.

We have anchored our discussion of Arctic atmospheric
circulation features on atmospheric blocking and moisture
transport, as these phenomena have been widely studied and
are interrelated mechanisms by which lower-latitude processes
can couple with high-latitude Arctic climate. Blocking can
broadly be defined as a quasi-stationary anomalous
anticyclonic circulation pattern which disrupts the eastward
propagation of cyclones and other systems, analogous to traffic
congestion within the atmosphere (Nakamura and Huang, 2018).
Poleward moisture transport into the Arctic is primarily
accomplished by short-lived intrusion events associated with
cyclones, which preferentially occur in certain regions and
seasons as detailed in Arctic Moisture Transport Pathways and
Climatology. Blocking and moisture transport are closely related,
as poleward moisture transport is favored along the upstream
flank of a blocking anticyclone, and latent heat release within the
moisture plume often helps maintain or strengthen the block.
These phenomena have important regional and global climate
implications due to their influence on Greenland Ice Sheet surface
mass balance and Arctic sea ice variability (Greenland Blocking:
Impacts on Ice Sheet Surface Mass Balance and RelationshipsWith
Moisture Transport and Arctic Moisture Intrusions: Impacts on
Sea Ice and RelationshipsWith Blocking). Greenland blocking and
episodes of extreme moisture transport into the Atlantic and
Pacific sectors of the Arctic have shown increasing trends in
recent years, highlighting the importance of further research to
clarify the complex interrelationship between cyclone-driven
moisture intrusions, blocking, and sea and land ice in a
rapidly changing Arctic, along with the contribution of these
phenomena to overall Arctic amplification.

With the nature of these Arctic moisture intrusions being
associated with short-lived, intense events linked to cyclones
(Sorteberg and Walsh, 2008; Dufour et al., 2016; Rinke et al.,
2017; Villamil-Otero et al., 2018; Fearon et al., 2020) and Rossby
wave breaking (Liu and Barnes, 2015), we have also reviewed the
role of tropical subseasonal atmospheric variability in forcing
extratropical and polar atmospheric circulation (Tropical-High
Latitude Subseasonal Teleconnections). The MJO has been found
to be an effective source of Rossby wave generation to the
extratropics (Hoskins and Karoly, 1981; Sardeshmukh and
Hoskins, 1988; Bladé and Hartmann 1995; Jin and Hoskins,
1995; Hendon and Salby, 1996), with poleward-propagating
Rossby waves excited by MJO-related tropical convection
being linked to polar amplification of surface air temperature
(Lin and Brunet, 2009; Lee et al., 2011; Yao et al., 2011; Yoo et al.,
2011; Yoo et al., 2012; Zhou et al., 2012; Rodney et al., 2013;
Johnson et al., 2014; Yoo et al., 2014; Lin, 2015; Oliver, 2015),
precipitation (Bond and Vecchi, 2003; Jeong et al., 2008; Lin et al.,
2010; Becker et al., 2011; He et al., 2011; Baxter et al., 2014; Jones

and Carvalho 2014), sea-level pressure, snow depth (Barrett et al.,
2015; Henderson et al., 2017), and sea ice (Henderson et al.,
2014).

Although our focus in this review is on subseasonal extra-
Arctic forcing originating in the tropical Pacific and Indian
Oceans, we also note that a number of studies have shown
that Atlantic Ocean variability can influence Northern
Hemisphere high latitude climate on interannual to
multidecadal time scales (e.g., Kwon and Joyce, 2013; Hahn
et al., 2018; Kwon et al., 2018; Kwon et al., 2020; Joyce et al.,
2019; Athanasiadis et al., 2020). Future studies should examine
the relative importance and characteristic time scales of these
Indo-Pacific and Atlantic influences on Arctic climate in a
coherent framework.

When considering future Arctic climate, a great deal of
uncertainty exists due to rapid, and in some cases
unprecedented, changes that have already occurred in recent
decades. Here, we have focused on within- and extra-Arctic
process drivers, specifically high-latitude atmospheric blocking,
poleward moisture transport, and tropical-high latitude
subseasonal teleconnections, and the role they have on the
Arctic atmosphere, surface variables and amplification of
changes in this region. Remaining questions arise from 1) the
theoretical linkages between Arctic amplification and blocking, 2)
the future evolution of poleward moist and dry static energy
transport, and 3) future change in tropical subseasonal variability.
Observed blocking trends are dependent on the metrics used to
quantify such events and there are inconsistencies in current
climate models’ abilities to fully capture blocking. Poleward
moisture transport is projected to increase in a warming
climate, but the vertical structure of moisture transport will
likely determine the magnitude of its contribution to Arctic
surface warming (Arctic Moisture Intrusions: Impacts on Sea
Ice and Relationships With Blocking), and decreasing dry static
energy transport due to sea ice loss may limit increases in total
atmospheric heat transport to the Arctic (Audette et al., 2021).
Similarly, divergent consensus on future trends of tropical
subseasonal variability under a warmer climate makes
projections of MJO-Arctic linkages under such climates
challenging, and warrants more research to understand this
complex and highly non-linear connection between the tropics
and Arctic amplification.
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