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Eurasian October snow water equivalent: using
self-organizing maps to characterize variability and identify

relationships to the MJO
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ABSTRACT: Variability in October daily snow water equivalent (SWE) change using self-organizing maps (SOMs) was
explored in this study. In addition, connections between October Eurasian daily snow water equivalent change (ΔSWE) and
the leading mode of atmospheric intra-seasonal variability, the Madden–Julian Oscillation (MJO), were considered. Through
this analysis, dipole and tripole patterns of dailyΔSWE over Eurasia were identified and were moderately negatively correlated
to mid-tropospheric geopotential height anomalies. Additionally, SOM nodes capturing over 91% of October days were found
moderately correlated with at least one MJO phase. The majority of correlation coefficients with magnitude above 0.30 were
found for MJO phases 4–7, indicating that tropical convective anomalies over the Indian Ocean and Maritime Continent
have the most impact on October circulation and snow variability. Furthermore, MJO phases with above-normal frequency
were most often found in SOM nodes with positive correlations between their respective 500-hPa height anomalies, while
MJO phases with below-normal frequency were most often found in SOM nodes with negative correlations between their
respective 500-hPa height anomalies. These correlation patterns provide additional evidence linking the MJO to Eurasian
snow variability. These results highlight a new application of SOMs in identifying snow variability throughout Eurasia during
the month of October, in addition to providing evidence for tropical modulation of the extratropics on the intra-seasonal
timescale.
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1. Introduction

Terrestrial snow is sensitive to the atmosphere on a range of
spatial and temporal scales (Barnett et al., 1989; Hender-
son and Leathers, 2010; Falarz, 2013; Peng et al., 2013;
Thompson and Lees, 2014). As such, connecting sur-
face snow amount to variability in atmospheric circulation
remains a challenging but important problem (e.g. Derksen
and LeDrew, 2000; Dye, 2002; Xia et al., 2014). Because
of its general cooling effect on the land surface, snow has
temporally lagged relationships with many important gen-
eral circulation features. For example, winter snow cover
over western Eurasia is inversely correlated to subsequent
summer monsoon rainfall over the Indian subcontinent
(Bamzai and Shukla, 1999; Wu et al., 2014) via a mech-
anism that strengthens surface pressures over India, weak-
ens the Somali jet, and even weakens tropical easterlies
in the eastern Pacific during periods of enhanced win-
ter snow (Vernekar et al., 1995). Autumn Eurasian snow
cover is also well linked to lagged relationships with extra-
tropical circulation. For example, greater snow cover in
autumn over Eurasia leads to greater surface cooling which
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leads to a stronger Siberian high in winter (Cohen and
Entekhabi, 1999). Furthermore, years with above-normal
October snow extent over Eurasia also tend to have higher
geopotential heights in the high latitudes during the sub-
sequent winter (Cohen et al., 2007). This temporal lag is
also seen in general circulation models (Gong et al., 2003;
Fletcher et al., 2007; Peings et al., 2012), although the
upward-propagating Rossby wave signals seen in obser-
vations are not as well reproduced, limiting propagation
into the stratosphere (Hardiman et al., 2008; Furtado et al.,
2015). Autumn Eurasian snow cover has also been found
to be a skillful predictor of upcoming winter North Atlantic
Oscillation (NAO) mode (Cohen and Jones, 2011; Tian and
Fan, 2015), and similarly, October Eurasian snow cover
is strongly positively correlated (r = 0.8) to both 10-m
wind speed and significant wave height over the North
Atlantic and adjacent seas (Brands, 2014). A potential
physical pathway for this lagged teleconnection, described
by Cohen et al. (2007), starts with above-normal Octo-
ber snow in Siberia, a condition that favours vertical
Rossby wave flux activity that acts to weaken the polar
stratospheric vortex (Smith et al., 2011), and in turn via
downward stratosphere–troposphere coupling (Baldwin
and Dunkerton, 1999), this weakened vortex favours the
negative phase of the Arctic Oscillation (AO) (Thompson
and Wallace, 1998) in the following winter.
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Despite this well-studied lead–lag mechanism driven
by autumn Eurasian snow, comparatively little is known
about the forcing for variability of October snow itself.
Thus, one of the primary goals of this study was to exam-
ine patterns of variability in daily change in snow water
equivalent (SWE) and identify regions with similar vari-
ability, largely on the synoptic scale. Another goal of
this study was to explore how observed variability in
daily SWE might be connected to the leading mode of
atmospheric intra-seasonal variability, the Madden–Julian
Oscillation (MJO) (Madden and Julian, 1971, 1972). The
MJO is known to modulate wintertime polarity of the NAO
(Cassou, 2008), the Pacific-North American (PNA) pat-
tern (Johnson and Feldstein, 2010), and the AO (Flatau
and Kim, 2013), as well as daily changes in Northern
Hemisphere (NH) spring snow depth (Barrett et al., 2015)
and mid-winter and summer Arctic sea ice concentration
variability (Henderson et al., 2014). Hence, the hypoth-
esis tested in this study was that the MJO would also
have a signal in variability of October Eurasian SWE
changes. As such, studies like this one that connect the
MJO to snow variability both offer additional explanation
for observed October snow variability and reveal another
manner by which the tropics and extratropics are con-
nected. The remainder of this article is organized as fol-
lows: data and methods are presented in Section 2, results
of self-organizing map (SOM) and MJO analyses are pre-
sented in Section 3, and conclusions are presented in
Section 4.

2. Data and methods

The SOM is a neural-network technique based on
machine learning (Kohonen, 1988, 2001; Vesanto
and Alhoniemi, 2000). At its most basic function, it
projects multi-dimensional input data onto a low, usually
two-dimensional space. The SOM is useful because it
preserves the neighbourhood relationships of the input
data. The process iterates and fine-tunes, hence it is
called self-organizing, and similar patterns are mapped
onto nearby regions in the two-dimensional space, while
dissimilar patterns are placed further apart. The SOM is
used widely as a data visualization and mining method for
complex data sets, and has become increasingly adopted
in the geosciences because its clusters tend to have more
physical meaning than other statistical techniques (Liu and
Weisberg, 2005). A thorough review of SOM techniques
and their applications to meteorology is found in Liu and
Weisberg (2011).

To explore variability in October SWE over Eurasia
(30∘–80∘N, 15∘W–180∘E), daily changes in the SWE
product available in the ERA-Interim/Land reanalysis
(Balsamo et al., 2011) were calculated for all October days
from 1980 to 2010. Although termed ‘snow depth’ in the
ERA-Interim download interface (available at http://apps.
ecmwf.int/datasets/data/interim-land/type=an/), the snow
product from ERA-Interim/Land is actually SWE (Bal-
samo et al., 2015). While snow depth and SWE data sets

have some known limitations (Mudryk et al., 2015), the
SWE product in the ERA-Interim/Land reanalysis was
found to correlate well both spatially and temporally
with other observational and satellite retrieval measures
of snow, including outperforming the NASA Modern-Era
Retrospective Analysis for Research and Applications
(MERRA) SWE product (Mudryk et al., 2015). Further-
more, Brun et al. (2013) concluded that the snowfall
product in the ERA-Interim reanalysis was ‘very reli-
able’ (and this snowfall is the primary driver of the
SWE variable), and Balsamo et al. (2015) found that
SWE product in ERA-Interim/Land was highly corre-
lated with observations because it combined high-quality
ERA-Interim snowfall with cutting-edge representations
of blowing snow and sublimation. Anomalies of daily
change in SWE (ΔSWE) were calculated for each Octo-
ber day (1980–2010) by subtracting mean daily Octo-
ber ΔSWE over the entire period from daily ΔSWE.
While year-to-year variability in October mean SWE was
found over Eurasia (Bulygina et al., 2011) and the NH
(Estilow et al., 2015), long-term trends (either decreases or
increases) in SWE in October over Eurasia have not been
found, supporting use of the entire record (1980–2010) to
calculate October mean ΔSWE.

In this study, an SOM technique similar to the one
outlined in Skific and Francis (2012) was used to quan-
tify SWE variability over Eurasia. First, through linear
initialization, reference vectors of ΔSWE anomalies were
constructed. To do this, both eigenvectors and eigenvalues
were found such that the largest eigenvalues were paired
with two eigenvectors. These eigenvectors allowed the
SOM to fit a neural network to the October ΔSWE data.
Linear initialization allowed for a predetermined number
of weights, which, compared to random initialization,
trained the data faster (Skific and Francis, 2012). Sec-
ond, daily ΔSWE was compared to the reference vectors
using measurement of Euclidean distance. At this stage,
the daily ΔSWE anomalies were grouped into nodes
according to how small or large the Euclidean space was
between the data and the reference vector. The process
by which the nodes are filled is sometimes referred to as
the updating scheme. The third step involved fine-tuning
the nodes through minimizing the mean quantization
error. After mean quantization error was calculated and
node placement of daily ΔSWE adjusted, the training was
repeated and the data were once more placed in nodes.
This adjustment occurred several times as the nodes went
through the process of training. Once the training was
completed, which occurred after the specified number
of iterations had been applied, final reference vectors
were prepared. For this study, we tested the technique
sensitivity to training using 10 000 and 20 000 itera-
tions, values selected following Haykin (1994), Cavazos
(1999), and the SOM Toolbox guidance available online at
http://www.cis.hut.fi/projects/somtoolbox/documentation/
index.shtml. We found little material difference in the
identified patterns between 10 000 and 20 000 iterations.
Here, we present results from the SOM technique with
20 000 iterations. At this point, the fourth step, the final
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Figure 1. Self-organizing map neural network showing result of cluster-
ing Eurasian snow water equivalent for 961 October days (between 1980
and 2010) into 15 nodes. Number of days in each node is given in paren-
theses. Relative proximity of each neuron’s vector weight to its neighbors

is indicated by colour shading.

reference vectors were placed on a grid in a similar loca-
tion as their ‘best match’ nodes. By the end of this process,
daily ΔSWE data similar in nature were clustered based
in nodes and placed on neural network (Figure 1). Of the
15 nodes, node 2 had the most members (267 October
days) and node 15 the fewest members (12 October days).
Nodes in the lower-right corner were seen to have weaker
relationships between their ΔSWE patterns, indicated
by darker colours in Figure 1, while nodes in the top
left-centre were seen to have more similar ΔSWE pat-
terns, indicated by more yellow colours in Figure 1. The
nodes with fewer members tended to be least related to
each other, while the node with the most members (node
2) was most related to the node with the second-most
members (node 7).

Guided by the SOM studies of Richardson et al. (2003),
Cassano et al. (2006), and Blackmore and Goodwin
(2008), we selected a neural network with nodes shaped
in a 3× 5 orientation. Through the iterative process of
linear initialization, minimizing mean quantization error,
and training the data based on a pre-specified number
of iterations, daily ΔSWE was clustered into similar
nodes, thereby identifying patterns that may otherwise
have gone unseen if using other compositing techniques
(Skific and Francis, 2012). Similar SOM techniques have
been used by others to explore snow variability (Cavazos,

2000; Takala et al., 2008; Fassnacht and Derry, 2010),
although those studies tended to focus more on regional
or catchment basin, not continent-scale variability.

After daily ΔSWE anomalies were clustered into nodes
by the SOM technique, composite anomalies of ΔSWE
were calculated for each node by averaging the daily
ΔSWE anomalies for all of the days in that node. Anoma-
lies of 500-hPa height were calculated for each node by
subtracting mean monthly 500-hPa height from the mean
daily 500-hPa height for that node. To explore relation-
ships with the MJO, phase and amplitude of the MJO were
defined using the daily real-time multivariate MJO (RMM)
index (Wheeler and Hendon, 2004). This index is com-
prised of the two leading principal components (PCs) of
a multivariate empirical orthogonal function analysis of
daily outgoing longwave radiation and 850- and 200-hPa
zonal wind fields. The two PCs classify the phase of MJO,
corresponding roughly to the geographical location and
intensity of enhanced tropical convection on a particu-
lar day (Wheeler and Hendon, 2004). The resulting index
describes an MJO cycle that generally progresses east-
ward, from phase 1 to 8 and back to phase 1 again. Days
during which the RMM index had amplitude greater than
or equal to 1 (amplitude is defined as the square root
of RMM12 +RMM22), and therefore classified as active,
were considered for analysis. Days when the RMM index
amplitude was less than 1 were considered as inactive and
classified as phase 9 for this analysis.

Gridded composite anomalies of 500-hPa height were
calculated for each MJO phase at 7-day lags using the fol-
lowing method. First, for each MJO phase, mean 500-hPa
heights at dayn+7, which was 7 days after an active MJO
dayn, were calculated at each grid point. Mean values
included all days that met the active MJO threshold, but
no other tests (e.g. eastward propagation, consecutive-day
active, etc.) were applied. Second, October (1980–2010)
mean 500-hPa heights on dayn+7 were subtracted to cal-
culate lagged 500-hPa height anomalies for that phase.
Third, daily anomalies of 500-hPa height were averaged
for each MJO phase to find the anomaly for that phase.
Anomalies were examined at a 7-day lag following Cas-
sou (2008), L’Heureux and Higgins (2008), Lin and Brunet
(2009), and Flatau and Kim (2013), who found that the NH
extratropical response lagged tropical MJO convection by
approximately 7 days.

3. Results

To give context to SOM-based snow analysis, mean daily
ΔSWE in October was calculated (Figure 2). Through-
out Eurasia, mean daily ΔSWE varied from approximately
0–2.5 mm day−1, with largest changes occurring across
north central to northeast Eurasia). Lesser values of daily
ΔSWE were noted over Europe and western Asia, gener-
ally less than 1 mm day−1 in October. Daily ΔSWE during
this month was generally limited to north of the 50th paral-
lel, with the exception of some higher elevation locations.
As will be shown in the results that follow, some nodes of
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Figure 2. October mean daily snow change (ΔSWE), in mm day−1, from
the ERA-Interim/Land reanalysis, 1980–2010.

snow variability had anomalies well in excess of 100% of
the October mean, both over the areas with largest mean
ΔSWE but also in the western parts of Eurasia, where
mean ΔSWE often was less than 1 mm day−1.

3.1. SOM analysis of daily ΔSWE variability

Several interesting patterns of ΔSWE variability emerged
from the SOM analysis (Figure 3). First, one node, node 2
(Figure 3(b)), displayed pan-continental variability largely
of the same sign (positive, indicated by blue colours). Node
2 was also the node populated by the most days (267).
The magnitude of these positive ΔSWE values was up to
3 mm day−1, indicating that the mean daily ΔSWE change
on about 20% of the days in October was above normal,
particularly so over regions of central and eastern Europe
that typically see very little mean ΔSWE (Figure 2). Other
nodes displayed dipole- and tripole-like patterns of ΔSWE
variability. For example, node 1 (Figure 3(a)), which rep-
resented about 3% of October days, exhibited a tripole
positive–negative–positive ΔSWE pattern that spanned

Northern Europe, central and north-central Eurasia, and
eastern Eurasia. Nodes 3, 4, and 5 (Figure 3(c)–(e)) rep-
resenting 19% of October days, also exhibited tripole
patterns across Europe and Asia, but in those nodes, the
negative anomaly centres were located farther west when
compared to node 1. Nodes 9, 10, and 15 (Figure 3(i),
(j), and (o)), representing 4% of October days, resembled
more of a dipole, and especially in nodes 10 and 15, the
dipole was oriented more north–south, contrasting with
nodes 1, 3, 4, and 5. This contrast is a typical character-
istic of SOM node arrangements, whereby nodes located
in opposite corners of the neural network tend to be most
dissimilar.

To link observed surface ΔSWE patterns to atmospheric
variability in the middle troposphere, 500-hPa height
(z500), composited for each SOM node using the same
subset of days as the ΔSWE field and expressed as
anomalies from the mean October 1980–2010 z500 field,
was examined (Figure 4). Anomalies of z500 were also
chosen because an additional goal of this study was to
investigate relationships between ΔSWE and the MJO,
and convective heating like that of the MJO is known
to modulate extratropical circulation (Sardeshmukh and
Hoskins, 1988; Matthews et al., 2004; Yoo et al., 2012;
Barrett et al., 2015) with approximately a 7-day lag (Cas-
sou, 2008; L’Heureux and Higgins, 2008; Lin and Brunet,
2009; Flatau and Kim, 2013). Similar to daily ΔSWE,
anomalies of z500 by node often resembled dipole- and
tripole-like patterns (Figure 4). Given that mean October
z500 heights over North America were largely zonal (not
shown), positive and negative z500 anomalies indicated
waviness and implied meridional flow structures. In node
1, positive z500 anomalies centred near 100∘E were

Figure 3. Anomalous mean daily snow change (ΔSWE), in mm day−1, October 1980–2010, for 15 self-organizing map (SOM) nodes (a–o). Node
number and number of days in each node n are given at top of each panel.
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Figure 4. As in Figure 3, but for 500-hPa height (z500) anomalies (in m). Positive anomalies indicated by solid contours and negative anomalies by
dashed contours, with contour interval of 40 m. Correlation coefficients r between daily z500 anomalies and daily ΔSWE anomalies (Figure 3) given
in upper-right corner of each panel. Correlation coefficients for all nodes, with the exception of node 7, were statistically significantly different from

zero with 99% confidence.

flanked on either side by negative anomalies, indicating a
trough-ridge-trough circulation pattern, also known as an
omega block (Figure 4(a)). Similar positive height anoma-
lies were seen in nodes 2 and 3, although the positive
anomaly centres were found shifted west to near 70∘E
(Figure 4(b) and (c)). Other nodes featured negative z500
anomalies over Europe or central Eurasia and positive
anomalies to the east, including nodes 11, 12, and 13
(Figure 4(k)–(m)). Tripole z500 anomalies were seen in
node 5 (Figure 4(e)), nodes 9, 10, and 15 (Figure 4(i), (j),
and (o)).

The z500 anomalies agreed qualitatively with ΔSWE
anomalies for many nodes, in that ridges (troughs) were
collocated with regions of negative (positive) ΔSWE
anomalies. To quantify the strength of this agreement
between z500 anomalies and ΔSWE anomalies, Pear-
son product–moment correlation coefficients between the
two fields were calculated for each node. Correlation
values are reported in the upper-right corner of panels
in Figure 4. Statistically significant (at the 99% confi-
dence level using a Student’s t-test for correlation coef-
ficients) correlations between 500 hPa height anomalies
and anomalies in daily change in SWE were found for all
nodes except node 7. Strongest correlations were found
for node 1 (r =−0.60) and node 3 (r =−0.48). In those
two nodes, which represent about 10% of October days,
negative ΔSWE anomalies over north-central Asia were
seen generally collocated with positive z500 anomalies.
This was not surprising, as mid-tropospheric ridges tend
to be associated with clearer skies and warmer tempera-
tures, which would be associated with below-normal (neg-
ative) ΔSWE. In node 12 (r =−0.45), which featured
a pronounced dipole in z500 anomalies, negative height

anomalies over Europe were collocated with positive
ΔSWE anomalies there, while positive height anoma-
lies along 60∘N between 100∘ and 150∘E were generally
collocated with negative ΔSWE anomalies. Physically,
in node 12, mid-troppospheric troughs (represented as
negative z500 height anomalies) can be associated with
both precipitation and below-normal temperatures, both
of which would support the observed above-normal (posi-
tive) ΔSWE anomalies. Even those nodes with correlation
coefficients r between −0.30 and −0.40, z500 anomalies
were generally collocated with the opposite-signed ΔSWE
anomalies. However, it is possible that the correlation coef-
ficients were lower in those nodes because of the baroclinic
nature of the atmosphere in October, whereby anomaly
centres of mid-troposphere z500 and surfaceΔSWE would
not vertically align, thus reducing the correlations between
the two fields. It is also possible that other factors, besides
simply snowfall or snow melt, including snow compaction,
snowpack metamorphosis, or blowing snow, also influ-
enced ΔSWE and led to weaker correlations with z500
heights. Despite such factors, these correlations agreed
well with Barrett et al. (2015), who found similar agree-
ment between ΔSWE and z500 in spring (March–May).

3.2. Connection to the MJO

To test possible relationships between October daily
ΔSWE variability and the MJO, z500 height anomalies
lagged by 7 days were calculated for each active MJO
phase (and also for the inactive neutral phase). These
anomalies were then correlated with z500 height anoma-
lies for each SOM node. Approximately 56% of days
featured active MJO, and approximately 44% of those
days were inactive (Figure 5), statistics supported by
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Figure 5. Relative frequency (left axis) and number of days (right axis)
of each active phase 1–8, with non-active (neutral) MJO indicated as

phase 9, October 1980–2010.

the MJO climatology of LaFleur et al. (2015). Among
the eight active phases, days were somewhat unevenly
distributed amongst MJO phases 1–8, where phases 5 and
1 occurred most often (Figure 5), with approximately 12
and 8% relative frequency (Figure 5), while phases 3 and
7 occurred least often (Figure 5), each with approximately
5% of the days in the period (Figure 5).

Composite anomalies of z500 were calculated at 7-day
lags for each active MJO phase as well as the neutral
phase (Figure 6). For each active phase, height anomalies
were seen over much of Eurasia. For example, 7 days
after active phases 1 and 3, negative z500 anomalies
were found extending across all of northern Eurasia,
with positive anomaly centres near 60∘ and 150∘E
(Figure 6(a) and (c)). Height anomalies 7 days after
active phases 2 and 7 resembled wave trains: in phase
2, negative–positive–negative–positive centres spread
across all of Eurasia (Figure 6(b)), and in phase 7, a
positive–negative–positive train of anomalies was seen
(Figure 6(g)). Seven days after neutral MJO, z500 height
anomalies tended towards zero (Figure 6(i)).

Some similarity was noted between z500 anomaly
patterns in the SOM node composites and patterns in the

lagged MJO phases. For example, for many MJO phases
and SOM nodes, z500 anomalies were of synoptic scale,
with positive and negative anomaly centres separated by
between 1000 and 2000 km. Additionally, the magnitude
of height anomalies by MJO phase sometimes approached
those seen in the SOM nodes, although for most MJO
phases, z500 anomaly magnitudes were smaller than z500
magnitudes for SOM nodes (and the contour interval in
Figure 6 is 20 m, only 50% of the contour interval in
Figure 4). Nevertheless, these similarities suggested a
potential modulation of mid-troposphere circulation by
the MJO. To test the degree of spatial similarity between
the two z500 anomaly fields, Pearson product–moment
correlation coefficients were calculated (Table 1) between
the z500 anomalies for each SOM node (Figure 4) and
the z500 anomalies for each MJO phase (Figure 6).
Statistical significance at the 99% confidence level was
calculated using the Student’s t-test for correlation coef-
ficients. Given the large number of grid points in each
field, most of the correlations between SOM and MJO
z500 were statistically significantly different from zero.
Thus, to aid in identifying potentially physically mean-
ingful correlations, |r|> 0.30 was selected as a threshold.
Of the 120 correlation coefficients between 15 SOM
nodes and 8 active MJO phases, 39 (or 32.5%) met this
threshold. With the exception of nodes 6 and 14, all
other nodes, representing 91% of October days, had at
least one correlation magnitude above 0.30. This strongly
suggests at least some role of the MJO in modulating
mid-troposphere circulation in October. The largest pos-
itive correlations were seen between node 12 and phase
4 (r = 0.61) and node 4 and phase 8 (r = 0.58), and six
other node-phase correlations featured coefficients above
0.50. The largest negative correlations were seen between
node 2 and phase 6 (r =−0.69) and also between node
3 and phase 5 (r =−0.64), and two other node-phase
correlations featured coefficients more negative than
−0.50.

Physically, the strongest positive correlation suggests
that the October 500-hPa height field over Eurasia 7 days
after enhanced convection over the Maritime Continent
(the geographical location of MJO phase 4) most closely

Figure 6. Anomalies of z500 (in m) for October 1980–2010 for eight active MJO phases 1–8 (a–h), with and non-active (neutral) MJO phase 9 (i).
As in Figure 4, positive anomalies indicated by solid contours and negative anomalies by dashed contours, with contour interval of 20 m. Number

of days in each phase n is given at the top of each panel.
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Table 1. Pearson product–moment correlation coefficients between 500-hPa height anomalies by SOM node and 500-hPa height
anomalies by MJO phase.

Phase 1 Phase 2 Phase 3 Phase 4 Phase 5 Phase 6 Phase 7 Phase 8

Node 1 0.49+ 0.24 0.20 0.27 −0.48− −0.41− −0.28 0.31+

Node 2 −0.14 0.08 0.04 −0.34− −0.19 −0.69− −0.58− −0.22
Node 3 0.52+ 0.27 0.27 −0.10 −0.64− −0.56− −0.53− 0.04
Node 4 0.01 −0.11 −0.26 −0.28 0.06 0.21 0.11 0.58+

Node 5 0.25 0.14 0.32+ 0.37+ 0.00 0.30+ 0.32+ 0.15
Node 6 −0.25 −0.09 0.03 −0.14 0.28 −0.15 0.01 −0.11
Node 7 −0.17 −0.09 −0.14 0.00 0.22 0.50+ 0.44+ −0.18
Node 8 0.19 −0.40 −0.17 −0.15 0.19 0.56+ 0.33+ −0.03
Node 9 0.22 −0.01 0.00 0.54+ −0.02 0.16 −0.03 0.29
Node 10 0.03 −0.11 0.00 0.55+ 0.29 0.52+ 0.51+ 0.29
Node 11 −0.44− 0.09 0.07 −0.35− 0.33+ 0.09 0.28 −0.33−

Node 12 0.04 −0.04 −0.08 0.61+ 0.05 0.46+ 0.44+ 0.40+

Node 13 −0.16 −0.20 −0.08 0.06 0.38+ 0.46+ 0.45+ −0.31−

Node 14 −0.26 −0.04 −0.17 0.12 0.15 0.07 −0.28 −0.16
Node 15 −0.15 0.19 0.02 0.31+ 0.21 0.28 0.33+ −0.02

Bold values indicate coefficients statistically significant from zero with 99% confidence. Symbols indicate strongest correlation coefficients, above
0.30 (+) and below −0.30 (−), also shown in Figure 7.

resembles that of node 12. The strongest negative correla-
tion suggests that the height field over Eurasia 7 days after
enhanced convection over the Western Pacific (the location
of MJO phase 6) would be opposite of the height field of
node 2. In addition to these physical relationships, several
other interesting patterns emerged in the correlations.
For example, the majority of the correlation coefficients
with magnitude above 0.30 were found for MJO phases
4–7. Per the Wheeler and Hendon (2004) definitions,
these four phases are located geographically closest to
Eurasia. This result suggests that those four MJO phases
cumulatively have the most impacts on mid-troposphere
circulation. Another interesting pattern that emerged in
the correlations was how the coefficients were distributed
among the SOM nodes. In phases 4–7, positive cor-
relations were found with higher numbered nodes and
negative correlations were found with lower numbered
nodes. The self-similarity among low-numbered nodes
and high-numbered nodes, and the differences between
low- and high-numbered nodes, agrees well with the SOM
neural network construction (Figure 1): similar nodes
were located closer together and dissimilar nodes located
farther apart. This pattern was also seen for MJO phases
1 and 8, with positive correlations seen with lower num-
bered SOM nodes and negative correlations with higher
numbered SOM nodes. Finally, differences in correlations
between MJO phases were also seen. For example, in
low-numbered SOM nodes (e.g. nodes 1–3), positive
correlations were seen with MJO phases 1 and 8 and neg-
ative correlations with phases 4–7. Similarly, in higher
numbered SOM nodes (e.g. nodes 9–11), negative corre-
lations were seen with MJO phases 1 and 8 and positive
correlations were seen with MJO phases 4–7. The simi-
larity between phases 1 and 8 and phases 4–7 agrees well
with the geographic regions defined by Wheeler and Hen-
don (2004), whereby numbered MJO phases correspond
roughly to geographic zones that progress eastward with
number (and wrapping around between phases 8 and 1).

To further explore the variability of MJO phases in
each SOM node, anomalous relative frequencies in the
occurrence of each phase (calculated with respect to the
October 1980–2010 mean) were calculated for each SOM
node (Figure 7). What emerged was another indication of
MJO influence on z500 heights for most patterns of snow
variability. For example, for most nodes, MJO phases that
were positively correlated with mid-tropospheric height
(indicated by red plus symbols in Figure 7) were found
for nodes that occurred more frequently than the October
mean. Similarly, MJO phases that were negatively corre-
lated with mid-tropospheric height (indicated with green
minus symbols in Figure 7) were found for nodes that
occurred less frequently than normal. To better understand
this pattern, three nodes were analysed in detail: nodes 1, 3,
and 12, representing 14.5% of October days. Those three
nodes were selected because they had the greatest correla-
tions between node ΔSWE anomalies (Figure 3) and node
z500 anomalies (Figure 4). Nodes 1 and 3 both featured a
region of negative ΔSWE over northwest Eurasia centred
near 65∘N (Figure 8(a) and (f)), and both nodes featured
a region of positive z500 anomalies nearly in the same
region. However, both nodes also featured a region of neg-
ative z500 anomalies extending across nearly all of Eurasia
poleward of about 70∘N. It is likely that region of negative
z500 anomalies (along with the weak but positive anoma-
lies seen near 60∘N) supported the moderate correlations
(r =+0.49 and r =+0.52, respectively) seen between z500
of nodes 1 and 3 and z500 of phase 1 (Table 1). MJO phase
1 occurred with above-normal frequency in both nodes
1 and 3 (Figure 8(e) and (j)), supporting the conclusion
that the MJO exerts influence in the circulation and snow
patterns of those two nodes. Additionally, z500 heights
7 days after active MJO phase 5 were most strongly
negatively correlated with z500 heights for nodes 1 and
3 (r =−0.48 and r =−0.64, respectively). These negative
correlations were likely the result of the negative z500
anomalies seen over much of Europe after MJO phase 5
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Figure 7. Relative frequency anomalies of each active MJO phase 1–8 and neutral MJO phase 9 (phases indicated on the abscissa axes) for each
SOM node (a–o). MJO relative frequency anomalies expressed with respect to the October 1980–2010 mean found in Figure 5. Red+ and green
symbols indicate anomalies where correlation coefficients of z500 anomalies (found in Table 1) were above 0.30 (+) or below −0.30 (−). Number

of days in each node n is given at the top of each panel.

(Figure 8(d) and (i)). Similar to phase 1, phase 5 occurred
less frequently than average in both node 1 and node 3.
Finally, in node 12, a tripole positive–negative–positive
snow pattern was seen (Figure 8(k)), and an accompany-
ing negative–positive–negative z500 height pattern was
also seen (Figure 8(l)). Two MJO phases were found to

have z500 anomalies most positively correlated to node
12 z500 anomalies: phases 4 and 7, and those two phases
occurred more frequently in node 12 than the October
mean. Thus, similar to nodes 1 and 3, these results support
the conclusion that the MJO influenced the circulation and
snow patterns represented by node 12.
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Figure 8. Mean daily ΔSWE anomalies (in mm day−1, a, f, and k) and z500 anomalies (in m, contour interval 40 m; b, g, and l) for nodes 1, 3, and
12, nodes selected for having strongest correlations between ΔSWE and z500. Mean daily z500 anomalies (in m, contour interval 20 m; c, d, h, i, m,
and n) for MJO phases 1, 5, 4, and 7, respectively, selected for having strongest correlations to node z500 anomalies. Anomalies of relative frequency
of MJO phases (e, j, and o) for nodes 1, 3, and 12. Plus and minus symbols indicate phases with strongest positive and negative correlations between

MJO z500 and node z500 anomalies.

4. Summary and conclusions

Motivated by the well-studied lead–lag relationship
between autumn snow and subsequent winter NH circu-
lation, and by the comparative lack of previous work on
autumn snow variability, this article sought to examine
patterns of variability in October SWE over Eurasia. This
was achieved using SOMs, a method which has been
increasingly adopted in the geosciences. In addition, con-
nections between October Eurasian ΔSWE to the leading
mode of atmospheric intra-seasonal variability, the MJO,
were explored.

The principal findings of the current study are as fol-
lows. (1) Fifteen patterns of large-scale October ΔSWE
variability were identified over Eurasia. Most of these pat-
terns showed coherent regions of synoptic-scale ΔSWE
variability, ranging from predominantly positive daily
ΔSWE across Eurasia to dipole- and tripole-like patterns
of ΔSWE variability. (2) SOM patterns of daily ΔSWE
variability were found moderately correlated to anomalies
of mid-tropospheric geopotential height. Physical organi-
zation of daily ΔSWE and z500 anomalies consistently
showed positive (negative) daily ΔSWE anomalies being
collocated with mid-tropospheric negative (positive) z500
anomalies. (3) The majority of correlation coefficients
with magnitude above 0.30 were found for MJO phases
4–7, indicating that tropical convective anomalies over

the Indian Ocean and Maritime Continent have the most
impact on October circulation and snow variability. (4)
Correlations with mid-troposphere height anomalies dif-
fered between lower numbered and higher numbered SOM
nodes, agreeing well with the statistical construction of the
SOM node array. Additionally, differences in correlation
coefficient signs were seen between MJO phases 1 and 8
and phases 4–7, in agreement with the geography and east-
ward progression of MJO phases. (5) Positive correlations
of 500-hPa height were most often seen for MJO phases
that occurred with above-normal frequency in those nodes,
and negative correlations were most often seen for MJO
phases that occurred with below-normal frequency in those
nodes. This relationship was seen particularly for nodes 1,
3, and 12, providing additional evidence for MJO modu-
lation of Eurasian snow variability represented by those
three nodes.

The results presented in this article highlight a new appli-
cation of SOMs in identifying snow variability in Eura-
sia during the month of October. Correlations between
ΔSWE and z500 heights agreed well with previous stud-
ies of spring ΔSWE variability (Barrett et al., 2015). In
addition, the hypothesis that the MJO would have a signal
with October ΔSWE was explored and validated for some
patterns of ΔSWE variability and MJO phases 4–7, likely
for the first time providing evidence for the relationship
between autumn Eurasia snow variability and tropical
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convection. This study therefore provides additional evi-
dence for connections between the tropics and the extrat-
ropics on intra-seasonal timescales.
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