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ABSTRACT: Large-scale weather patterns favorable for tornado occurrence have been understood 
for many decades. Yet prediction of tornadoes, especially at extended lead periods of more than 
a few days, remains an arduous task, partly due to the space and time scales involved. Recent 
research has shown that tropical convection, sea surface temperatures, and the Earth-relative 
atmospheric angular momentum can induce jet stream configurations that may increase or decrease 
the probability of tornado frequency across the United States. Applying this recent theoretical 
work in practice, on 1 March 2015, the authors began the Extended-Range Tornado Activity 
Forecast (ERTAF) project, with the following goals: 1) to have a map room–style discussion of 
the anticipated atmospheric state in the 2–3-week lead window; 2) to predict categorical level of 
tornado activity in that lead window; and 3) to learn from the forecasts through experience by 
identifying strengths and weaknesses in the methods, as well as identifying any potential scientific 
knowledge gaps. Over the last five years, the authors have shown skill in predicting U.S. tornado 
activity two to three weeks in advance during boreal spring. Unsurprisingly, skill is shown to be 
greater for forecasts spanning week 2 versus week 3. This manuscript documents these forecast-
ing efforts, provides verification statistics, and shares the challenges and lessons learned from 
predicting tornado activity on the subseasonal time scale.
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As forecast skill continues to improve (Bauer et al. 2015), especially in the extended range 
(Wanders and Wood 2016; Tian et al. 2017; Vigaud et al. 2017; Wang and Robertson 2019), 
interest from stakeholders is rapidly growing for forecasts that cover the subseasonal 

lead window (typically defined as the period spanning two weeks to two months into the 
future; Schubert et al. 2002; Robertson et al. 2015). This is particularly true for severe convective 
storms (SCSs; defined as thunderstorms that produce tornadoes, large hail, and/or damaging 
convective wind gusts) given the significant impacts on various economic and societal sectors 
(Simmons and Sutter 2013; Smith and Matthews 2015; NCEI 2019). Recent research has shown 
skill in forecasting U.S. tornado and hail frequency at various lead times in the subseasonal 
period (Allen et al. 2015; Lepore et al. 2017; Baggett et al. 2018; Lepore et al. 2018; Gensini 
and Tippett 2019), including a recently documented operational forecast of an anomalously 
high period of tornado frequency in late May 2019 issued more than three weeks in advance 
(Gensini et al. 2019).

These contemporary demonstrations of forecast skill for SCS events at subseasonal lead 
times is likely a testament to the increasing accuracy of global numerical weather predic-
tion models (Bauer et al. 2015) and the increased understanding of weather and climate 
factors that explain significant amounts of the variance in subseasonal SCS frequency. For 
example, climatological studies have identified clustering behaviors of periods of high tor-
nado frequency, which often occur over two or more days (Verbout et al. 2006; Trapp 2014). 
In addition, various weather and climate oscillations have strong links to U.S. tornado and 
hail frequency. The Madden–Julian oscillation (MJO) and the global wind oscillation (GWO) 
are two such modes of atmospheric variability with documented periodicity on the subsea-
sonal time scale (Weickmann and Berry 2009; Zhang 2013). While not mutually exclusive 
(the GWO encompasses the MJO through incorporation of the tropical zonal wind fields), both 
processes have been shown to modulate tornado and hail frequency across the United States 
(Barrett and Gensini 2013; Thompson and Roundy 2013; Barrett and Henley 2015; Gensini and 
Marinaro 2016; Baggett et al. 2018; Gensini and Allen 2018; Tippett 2018; Moore 2018; Gensini 
et al. 2019; Moore and McGuire 2019). A known physical pathway by which the MJO and GWO 
influence CONUS severe weather is by generating positive mountain and frictional torques, 
particularly as convection associated with the MJO increases across the Maritime Continent 
and moves toward the international date line. This forces a stronger Hadley cell circulation, 
causing anomalous fluxes in the tropical meridional tropospheric wind component. As air 
is displaced poleward, it moves closer to Earth’s axis of rotation, thus causing increases in 
the zonal wind component due to the conservation of angular momentum. An increase in 
Northern Hemisphere westerly momentum results, which produces an extension of the polar 
jet stream over the Pacific Ocean. This gives rise to positive atmospheric angular momentum 
anomalies, characteristic of GWO phases 5 and 6, with potential for jet extension that even-
tually leads to wave breaking and a reduction of atmospheric angular momentum. It is this 
decreasing tendency of atmospheric angular momentum that favors synoptic weather pat-
terns supportive of tornadoes east of the U.S. Rocky Mountains (Weickmann and Berry 2009; 
Gensini and Marinaro 2016). These synoptic weather patterns often include a midtropospheric 
trough in the western United States and a poleward flux in surface moisture across the Great 
Plains. More simply, GWO and MJO have been shown to alter the 300-hPa height fields, with 
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positive severe weather frequency anomalies generally located southeast of negative height 
anomalies, in regions favorable for ascent and for greater vertical wind shear (Barrett and 
Gensini 2013; Barrett and Henley 2015; Gensini and Marinaro 2016).

From an operational perspective, early modern forecasts for SCS events were confined to the 
same or next day (Grice et al. 1999), but it is now commonplace to see official forecast outlooks 
for SCSs—issued by the NOAA/NWS’s Storm Prediction Center (SPC)—with leads of 4–8 days. 
SPC forecasts have shown increasing skill with respect to time since the mid-1990s (Hitchens 
and Brooks 2012, 2014; Herman et al. 2018); however, consistent skillful forecasts of daily 
tornado and hail activity are not likely to be found beyond day 9 and 12, respectively, if solely 
using current atmospheric numerical weather prediction systems (Gensini and Tippett 2019). 
Despite the limitations of dynamical prediction, other subseasonal forecasting techniques 
can act as a “bridge” to extend prediction beyond the traditional limits of NWP (Zhang 2013).

Extended anomalous periods of tornado frequency, such as the events of May 2003 (Hamill 
et al. 2005), April 2011 (Doswell et al. 2012; Simmons and Sutter 2012; Knupp et al. 2014), and 
more recently in May 2019 (Gensini et al. 2019) strongly motivate both this project and future 
work focusing on subseasonal prediction of SCSs. While dynamical model skill begins to 
decay during the early portion of this forecast window, there are still forecast approaches 
(e.g., statistical analogs, model blends, linear inverse models, machine learning) that can 
achieve statistically significant skill relative to a persistence or climatological forecast. In 
addition, forecast lead times beyond one week would benefit from relaxing the time and 
space constraints of the traditional daily forecast target (e.g., larger verification area, forecast 
target of multiple days or a week), constraints that are related to increasing error growth 
and uncertainty with respect to time. This has been demonstrated with dynamical forecasts 
from NCEP’s Climate Forecast System, version 2, by using monthly forecast targets (Lepore 
et al. 2018).

With these thoughts in mind, the Extended-Range Tornado Activity Forecast (ERTAF) 
project was formed in March 2015 with the primary goal of assessing the feasibility of opera-
tional week 2 and week 3 forecasts of U.S. tornadic activity. Over the past five years, during 
the period 1 March–31 May, ERTAF participants have been using a variety of dynamical and 
statistical predictors to produce simple tercile forecasts of tornado activity for the week 2 and 
week 3 lead periods. In this article, we highlight both the successes and failures of our ap-
proaches, the tools that have been found to be useful, lessons we have learned throughout 
this process, and reflect on whether such forecasts could be introduced into a more formal 
operational setting.

Forecasting approaches
ERTAF forecasting methodologies leverage both dynamical and statistical guidance, with 
dynamical guidance playing a greater role in early portions of week 2 due to the waning skill 
in week 3 (Gensini and Tippett 2019). The general approach focuses on the planetary- to 
synoptic-scale physical mechanisms, rather than potential specific mesoscale details of any 
given event. Our experience suggests that a skillful pathway to forecast SCS events at sub-
seasonal lead times is to rely on synoptic-scale Rossby wave configurations and the tropical/
extratropical processes that influence them.

The forecast target is predicting the terciles of weekly CONUS tornado counts relative to 
climatology (1986–2015) during weeks 2 and 3. Possible forecasts include below average (“BA”; 
<75% of climatology), average (“A”; 75%–125% of climatology), and above average (“AA”; >125% 
of climatology). A typical forecast discussion for a given week begins with the discussion of 
verification from the previous week, and a score of −1, 0, or 1 is assigned to the previous week’s 
forecast. Scores of −1 are recorded when tercile forecasts are two categories off (e.g., forecast 
of “BA”, but verified as “AA”), 0 when tercile forecasts are one category off (e.g., forecast of 
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“AA”, but verified as “A”), and 1 when the correct tercile forecast was made (e.g., forecast and 
verification of BA conditions). The team revisits its reasoning from the forecast (from two and 
three weeks prior) and discusses the evolution of the global circulation related to what the 
team expected to occur.

The ERTAF team then shifts 
its focus on the creation of the 
week 2 forecast, and that pro-
cess begins with analysis and 
discussion of major features 
in the observed global circula-
tion. This includes examina-
tion of current MJO and GWO 
phases, spatial patterns of 
global SST anomalies, global 
and regional mountain/friction 
torque budgets, global satellite 
imagery, background season-
al oceanic/atmospheric base 
states (e.g., ENSO), and delib-
eration about how these fea-
tures may impact the forecast 
periods. Dynamical forecasts 
are considered from the NCEP’s 
Global Ensemble Forecasting 
System, the European Centre 
for Medium-Range Weather 
Forecasts Ensemble, and the 
NCEP’s Climate Forecast System, 
version 2. In conjunction with 
the previous products, these 
models are investigated and aid 
in the subjective tercile forecast 
for week 2. Ensemble output is 
heavily used in the assessment 
of forecast confidence. As an ex-
ample, we have found great util-
ity in examining “chiclet”-style 
plots (Carbin et al. 2016) that dis-
play standardized anomalies of 
the daily CONUS coverage of the 
supercell composite parameter 
(SCP; Fig. 1a) and spatial plots 
of member SCP accumulation 
for the week (Fig. 1b). The SCP 
is a dimensionless combination 
of 0–6-km vertical wind shear, 
convective available poten-
tial energy, and 0–3-km storm-
relative helicity (Thompson 
et al. 2003).

Fig. 1. Examples of (a) Global Ensemble Forecast System (GEFS) chiclet 
chart. Standardized anomalies of the daily sum of the supercell composite 
are plotted as a function of daily lead time (x axis) and ensemble member 
(y axis) and (b) a spatial map of GEFS weekly supercell composite accu-
mulation. Both products (and their derivatives) have helped the ERTAF 
project make skillful forecasts for week 2 tornado activity.
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For week 3, the forecast focus is typically on anticipated changes to the underlying physical 
“base state” of the atmosphere, where we tended to give greater weight to the leading modes 
of subseasonal variability (e.g., MJO, GWO) through use of dynamical forecasts and statistical 
analogs. Forecasts of Real-time Multivariate MJO (RMM) phase space from the Climate Predic-
tion Center are heavily utilized, in addition to some experimental products developed by the 
ERTAF team (e.g., Climate Forecast System, version 2, predictions of GWO phase space; Fig. 2). 
The team tended to default to “A” conditions for week 3 if the leading modes of subseasonal 
variability were not coherent (e.g., a neutral MJO or large spread in the ensemble members), 
as this uncertainty reduced the team’s forecast confidence. In addition to the tercile forecasts 
for both weeks, textual discussions were also provided as reasoning for the forecasts. For 
example, on 28 April 2019, the forecast discussion issued read as follows:

Week 3 (and beyond) continues to focus on the propagation of the current convective activity over 
the Indian Ocean. This signal is forecast to shift into the western hemisphere by week 2 / end of 
week 3. We are unsure of the exact timing that could accompany an associated jet extension / 
collapse and associated potential for AA conditions at this time. GEFS and ECMWF ensembles 
both suggest that this process will be starting around the middle part of week 3. This would 
suggest that any subseasonal signal for an AA forecast would hold off until beyond 18 May. We 
will watch this process closely and update next week accordingly.

	 —Forecasters: Gensini, Allen, Gold, Barrett

This discussion was the sec-
ond in a series of forecast 
discussions leading up to 
the anomalously high tor-
nado activity of late May 2019 
(Gensini et al. 2019).

In the spring of 2018, the 
ERTAF team added areal 
outlooks for week 2 tornado 
frequency if the week 2 tercile 
was forecast to be “AA.” This 
was introduced in an effort to 
explore the feasibility of fore-
casting the spatial locations 
of tornado occurrence during 
the week 2 period. While no 
objective definition exists 
for the week 2 areal outlook, 
the ERTAF team decided to 
simply outline a polygonal 
area across the CONUS where 
forecasters felt the greatest 
density of tornadoes would 
occur. While this is the new-
est aspect of the project, 
areal outlooks highlighting 
the potential for tornado 
events in week 2 do appear 

Fig. 2. The 4-week CFSv2 prediction (four-member ensemble) of the global 
wind oscillation (GWO) initialized 0000 UTC 24 Apr 2019. The green (red) 
dot indicates the start (end) of the 28-day forecast period. The blue number 
corresponds to the GWO phase.
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to be feasible (Fig. 3), especially during forecasts of opportunity (Gensini et al. 2019). In the 
future, we plan to calculate weekly climatological probabilities of tornadoes within a specified 
radius of a point, and then create areal outlooks based on the probability of climatological 
exceedance to make this a more objective and meaningful process.

Verification results
ERTAF tercile forecasts were first assessed for skill using the Heidke skill score (HSS). HSS 
measures the fraction of correct forecasts after eliminating those forecasts that would be correct 
due purely to random chance (Wilks 2011). HSS values for week 2 forecasts ranged from 0.11 
in 2016 to 0.49 in 2019, with a value of 0.37 for all forecasts over the 5-yr period (Fig. 4a). HSS 
values for week 2 were positive for all years, suggesting skill in all years over a random forecast. 
HSS values for week 3 forecasts ranged from −0.20 in 2018 to 0.44 in 2017, with a value of 0.23 
for all forecasts over the 5-yr period (Fig. 4b). To provide further context, HSS values were also 

Fig. 3. ERTAF areal tornado outlook (red polygon) issued on 12 May 2019, valid for 19–25 May 
2019. Red triangles indicate 19–25 May 2019 preliminary tornado reports.

Fig. 4. ERTAF and persistence Heidke skill scores for (a) week 2 and (b) week 3.
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calculated for a persistence forecast. A persistence forecast as a reference makes more sense 
for this application, as a climatology forecast would always be “A” and have a HSS of zero. 
The persistence forecast used herein was defined by the tornado activity tercile (“BA,” “A,” or 
“AA”) valid for the 7-day period leading up to the date the ERTAF team met to issue the week 2 
and week 3 forecasts. ERTAF week 2 forecasts were more skillful than persistence in each year, 
with HSS values ranging from 0.06 to 0.62 greater than persistence. HSS values were found 
to be 0.42 greater than persistence for all week 2 forecasts during the 2015–19 period. ERTAF 
week 3 forecasts were found to have a greater HSS value than persistence for all years except 
2018, with all forecasts over the 5-yr period (0.23) being 0.29 greater than persistence (−0.06). 
The driver of the poor performance for 2018 was a tendency for ERTAF forecasts to default to 
a forecast of “A” due to the absence of strong signals from the leading modes of variability. 
This resulted in a lower success rate in the face of many “BA” verifications.

In addition to HSS, the critical success index (CSI) was calculated as an objective mea-
sure of categorical forecast performance. CSI is calculated as the ratio of correct forecasts 
to the sum of the correct forecasts, misses, and false alarms. Thus, a collection of perfect 
forecasts (with no misses or false alarms) would have a CSI of 1 (Wilks 2011). CSI values 
for week 2 “BA” (Fig. 5a) and “AA” (Fig. 5c) forecasts were higher than for “A” forecasts 
(Fig. 5b). When examining all years and forecast terciles, the greatest fractional improve-
ment over persistence was found for week 2 “AA” forecasts. Persistence correctly forecast 
these events 8% of the time, whereas ERTAF recorded correct week 2 “AA” forecasts 38% 
of the time (Fig. 5c). Week 2 CSI values ranged from 0.83 (week 2 “BA” forecasts in 2015) 
to 0 (week 2 “A” forecasts in 2016). For week 3, the greatest improvement in ERTAF versus 
persistence CSI values was found for “AA” forecasts (27% improvement; Fig. 5f). When all 
years are aggregated, the ERTAF team outperformed (a higher CSI) a persistence forecast 
for all three terciles and for both weeks.

As a final evaluation metric—and to help uncover a source of forecast error—bias was 
calculated for each forecast tercile (“BA,” “A,” and “AA”) at each lead period (week 2 and 3) 
in each year (2015–19), and then compared to bias in the persistence forecast. Bias measures 
the fraction of events forecast compared to the total number of events that occur. An unbi-
ased collection of forecasts has a value of 1.0, while overforecasting would have a bias >1.0 
and underforecasting would have a bias <1.0 (Wilks 2011). While interannual variability is 

Fig. 5. ERTAF and persistence critical success index (CSI) scores for (a) “BA” week 2, (b) “A” week 
2, (c) “AA” week 2, (d) “BA” week 3, (e) “A” week 3, and (f) “AA” week 3 forecasts.
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present, week 2 forecasts for all years showed little to no bias (Fig. 6a). For week 3, a common 
theme of overforecasting “A” conditions is noted, at roughly the equal expense of “BA” and 
“AA” forecasts (Fig. 6b). This is due to an ERTAF team forecasting philosophy of issuing an 
“A” forecast (i.e., climatology) for the week 3 period in the absence of strong signals from the 
leading modes of subseasonal variability.

In summary, the first five years of the ERTAF project have demonstrated skill in the week 2 
and 3 forecasting of CONUS tercile tornado frequency categories as compared to a persistence 
forecast. Skill scores are generally higher for week 2 versus week 3, with a 14% reduction in the 
HSS from week 2 to week 3. Encouragingly, the ERTAF project has shown some of the highest 
skill scores during periods of “AA” conditions, which could be argued as the most important 
category for potential impacts to lives and property. Finally, while ERTAF forecasts could be 
considered unbiased for week 2, our results indicate that “A” forecasts were overused in the 
week 3 period. This could be targeted as a source of forecast error for the future improvement 
of week 3 forecasts.

Concluding remarks
As Brooks (2007) stated, “forecasters can be put in the difficult position of having to issue 
forecasts when the state of knowledge is less than perfect.” At the time scales involved in the 
ERTAF project, the authors find that an ingredients-based forecast approach must be em-
ployed in conjunction with the understanding of synoptic- and planetary-scale Rossby wave 
configurations that augment or diminish tornado event probabilities. In addition to the simple 
severe thunderstorm ingredients (i.e., source of lift to the level of free convection, adequate 
surface moisture, convective instability, and sufficient vertical wind shear), tornado occurrence 
also requires the understanding of capping inversion sources, thunderstorm morphology, 
mesoscale forcing for ascent, variability in lifting condensation level heights, low-level storm 
relative helicity, and more. ERTAF members had to synthesize multiple, sometimes offsetting, 
scenarios where tornado occurrence might be minimized or maximized. Discussions often 
included assessing such favorable environments heuristically, including the subjective assess-
ments of 1) quality of moisture return, 2) an overly meridional jet configuration, 3) potential 
timing of significant shortwaves, and 4) extreme capping associated with elevated mixed 
layers that may present in the CONUS Rossby wave configuration.

Much of the discussions for the week 3 period centered on trying to find a forecast of op-
portunity (Gensini et al. 2019), a moment where such ingredients may be favorably juxtaposed 
to support tornado activity, given pattern recognition or statistical links to known sources 

Fig. 6. ERTAF tercile forecast biases by year for (a) week 2 and (b) week 3 leads. Persistence forecast biases 
are shown as black × (“BA”), • (“A”), and + (“AA”) symbols for comparison.
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of subseasonal tornado frequency variability. Extrapolation of long-range deterministic and 
ensemble NWP guidance allowed for subjective estimates of the favorability of large-scale 
environments to local tornado events (e.g., confidence of a longwave thermal trough enter-
ing the western CONUS). In addition, while we have no way to objectively measure this at 
the current time, we believe that a contributing factor to the skill found in week 2 and week 3 
forecasts is related to forecaster experience (Hoffman et al. 2017). Each forecaster’s individual 
past experience and heuristic insight contributed akin to an ensemble member, resulting in 
a final blended forecast analogous to crowd-sourcing methods (Muller et al. 2015).

ERTAF members found that one of the greatest challenges in producing long-lead tornado 
activity–level forecasts was the definition of what to use as a forecast target. ERTAF members 
have discussed the use of tornado days, significant tornado days, tornado counts, tornado 
environments, standardized count anomalies, and even targeting temporal rolling windows 
instead of fixed calendar weeks. Specifically, the exact timing of an event has proven to be an 
elusive quantity to target at weeks 2 and 3, which is partly driven by the increasing forecast 
uncertainty as a function of lead time. Anticipated week 2 conditions to support “AA” often 
“split” across weeks 2 and 3, leading to a verification of “A” conditions in both periods. The 
authors continue to discuss best practices and future options for forecast targets, both in 
space and time.

Finally, the authors believe skillful predictions of U.S. tornado frequency at lead times of 
2 and 3 weeks are operationally feasible with current tools and the current state of scientific 
knowledge. While the historical forecast approach has been admittedly simple (i.e., tercile 
forecasts of CONUS activity levels for an entire week), it has proven to be skillful versus both 
persistence and random reference forecasts. Nevertheless, a significant amount of work will 
be needed in the future to refine forecast targets, understand the best predictors, create new 
forecast methods, and identify relationships with other modes of climate variability—with 
the overall goal of improving SCS prediction in the subseasonal forecast horizon.
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