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Abstract: The performance of 20 models from the Atmospheric Model Intercomparison Project (AMIP)
was evaluated concerning surface radiation over the tropical oceans (30◦ S–30◦ N) from 1979 to 2000.
The model ensemble mean of the net surface shortwave radiation (QSW) was underestimated compared
to the International Satellite Cloud Climatology Project (ISCCP) data by 4 W m−2. On the other hand,
net longwave radiation (QLW) was overestimated by 4 W m−2, leading to an underestimation of the
net surface radiation (Qrad) by 8 W m−2. The most prominent bias in the Qrad appears to be over
regions of low-level clouds in the off-equatorial eastern Pacific, eastern Atlantic, and the south-eastern
Indian Ocean. The root means squared error of QLW was larger than that of QSW in 17 out of 20 AMIP
models. Overestimation of the total cloud cover and atmospheric humidity contributed to the
underestimation of Qrad. In general, models with higher horizontal resolutions performed slightly
better than those with coarser horizontal resolutions, although some systematic bias persists in all
models and in all seasons, in particular, in regions of low-level clouds for QLW, and high-level clouds
for QSW. The ensemble mean performed better than most models, but two high-resolution models
(GFDL-HIRAM-C180 and GFDL-HIRAM-C360) outperform the model ensemble.

Keywords: AMIP simulations; surface heat flux; longwave and shortwave radiation

1. Introduction

The spatio-temporal distribution of surface energy plays an essential role in determining the
weather and climate on our planet (e.g., [1]). It has been recognized for a long time that the heat
balance on the earth’s surface is as important as that at the top of the earth’s atmosphere for short-term
weather fluctuations and long-term climate change [2]. As a result, it is important to evaluate the
surface energy budget from global models. Kiehl and Trenberth [3] presented the global mean energy
budget using satellite data and gridded reanalysis products. They found that factors like atmospheric
water vapor, greenhouse gases, and clouds can greatly affect the radiation budget, and concluded
that improved measurements are needed to lower the uncertainties in the annual global mean energy
budget. Although the incoming and outgoing energy must balance globally, they do not balance locally
or regionally [4]. Apart from the variation in the surface energy budget, there is also variation in the
atmospheric heat budget [2].

A key component of the surface energy budget is the surface heat flux, which contributes to the
exchange of mass and energy between the ocean and the atmosphere, and thereby, influences the
oceanic and atmospheric circulations. The net surface heat flux (Qnet) includes latent heat QLH, sensible
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heat QSH, net longwave radiation QLW, and net shortwave radiation QSW. In this study, we provide
an assessment of 20 atmospheric global climate models (AGCMs) participating in the Atmospheric
Model Intercomparison Project (AMIP, [5]) in their ability to simulate surface radiation. We confine our
assessment to the tropical oceans because they receive the most amount of solar radiation and play an
important role in affecting the earth’s climate system due to their large heat capacity. We conduct our
analysis over 30◦ S–30◦ N; the surface area of this latitudinal band is about 50% of the earth’s surface.

Surface radiative fluxes, QLW and QSW, can be split into upwelling and downwelling components.
The net longwave (QLW) at the surface is given by:

QLW = QULW −QDLW , (1)

where QULW is the upward, and QDLW is the downward longwave radiation. The QULW is determined
by the surface temperature (Ts) of the ocean according to the Stefan–Boltzmann law:

QLW = εσTs4
−QDLW , (2)

where ε is the surface emissivity, and σ is the Stefan–Boltzmann constant (5.67 × 10−8 W m−2 K−4).
Similarly, QSW at the surface is given by:

QSW = QDSW −QUSW , (3)

where QUSW is only a function of the surface albedo and QDSW. Therefore, Equation (3) could be
written as:

QSW = QDSW × (1− α), (4)

where α is the surface albedo.
Many past studies have focused on downward shortwave radiation (QDSW) instead of downward

longwave radiation (QDLW) because QDLW is not conventionally measured (e.g., [6,7]). Since the QDSW
depends on the atmospheric constituents like water vapor and cloud, simulated QDSW is affected by the
cloud parameterization in the model (e.g., [8]) and is one of the most important factors in the exchange
of energy between earth’s surface and the atmosphere (e.g., [9]). Wild et al. [10] verified QDLW using
direct observations gathered in the Global Energy Balance Archive [9,11]. Garratt and Prata [12] found
that the QDLW is typically underestimated in global climate models (GCMs), and evidence suggests
that bias persists for both all- and clear-sky conditions [9,13].

There are several unique aspects in our evaluation study of surface radiation: First, most of
the earlier studies have used coupled models (e.g., [13,14]) for the evaluation of surface radiation.
The number of studies related to atmospheric models is far fewer. Understanding the biases in surface
radiation in atmospheric models may help to understand its coupled counterpart. In particular,
prescribed sea surface temperature (SST) in AMIP simulations eliminates possible biases from errors in
SST [15]. Second, we also use long-term surface radiation data from moored buoys over the tropical
oceans. To the best of our knowledge, these data have not been used for a systematic evaluation of
atmospheric models. Third, prior studies have not been undertaken to assess the seasonal variability
of bias in AMIP simulated surface radiation.

In this study, we evaluate AMIP models concerning their ability to capture surface radiative fluxes
compared to the satellite and in situ observations over the tropical oceans. The global models with
coarse horizontal resolutions may not capture the convection and clouds over the tropical oceans.
This is expected to lead to bias in the surface radiation that is influenced by the atmospheric as well as
surface properties. However, no quantitative evaluation has been presented for AMIP models that
show the geographical and seasonal distribution of the bias. The possible causes behind model bias
and its dependence on horizontal resolutions are also explored.

The rest of the paper is organized as follows. Description of the models and data are given in
Section 2. Model-data comparison is presented in Section 3, followed by an exploration of the causes
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behind the model bias in Section 4. The extent to which the model bias is dependent on the model
horizontal resolutions is explored in Section 5. Summary and conclusions are given in Section 6.

2. Model, Data, and Method

We use the output from 20 AMIP models that are involved with the Coupled Model Intercomparison
Project (CMIP, [16]) for this study (Table 1). The choice of these models was based upon the availability
of all the parameters needed for this study. Specified boundary conditions were used for all AMIP
models [5,17]. Therefore, the inter-model differences are due to the internal dynamics of the models
and are not due to the surface boundary conditions. The reference for each model is also provided in
Table 1.

For model validation, we used surface radiation from the International Satellite Cloud Climate
Project (ISCCP, 1◦ × 1◦, [18]) that is available from the Objectively Analyzed air-sea heat Fluxes (OAFlux,
1◦ × 1◦, [19]) dataset. However, the net heat flux data in OAFlux is assimilated using the ISCCP and
other datasets [19]. The ISCCP data have been extensively used to improve the understanding and
modeling of the earth’s radiation (e.g., [20,21]). We also use ISCCP-D2 [21] for total cloud cover and
precipitable water. The ISCCP-D2 uses observations in the visible and infrared window portion of the
spectrum to determine total cloud amount as well as low-, mid-, and high-level clouds, and the total
precipitable water (TPW) amount [18]. In addition to the ISCCP data, we analyzed observations of
surface radiative fluxes from moored buoys (Figure 1) that include the Tropical Atmosphere Ocean
(TAO) array (63 buoys) in the Pacific, the Prediction and Research Moored Array in the Tropical Atlantic
(PIRATA) array (18 buoys) in the Atlantic, and the Research Moored Array for African-Asian-Australian
Monsoon Analysis and Prediction (RAMA) array (10 buoys) in the Indian Ocean.

Table 1. Description of the 20 Atmospheric Model Intercomparison Project (AMIP) models used for
this study along with the primary references. The bias and root mean squared error (RMSE, averaged
over 30◦ S–30◦ N) are written to the closest W m−2. CC stands for the correlation coefficient.

No. Model
Horizontal Resolution

Lat × Lon (No of Levels) References
QLW QSW

Bias RMSE CC Bias RMSE CC

1 ACCESS1-0 1.25◦ × 1.9◦ (38) [22] 6 16 0.86 1 12 0.98
2 BNU-ESM 2.8◦ × 2.8◦ (26) [23] 6 19 0.66 −4 14 0.96
3 CanAM4 2.8◦ × 2.8◦ (26) [24] 5 17 0.79 −2 14 0.97
4 CESM1-CAM5 0.94◦ × 1.25◦ (27) [25] 0 15 0.76 −4 12 0.97
5 CMCC-CM 0.75◦ × 0.75◦ (31) [26] 8 18 0.79 0 15 0.98
6 CNRM-CM5 1.4◦ × 1.4◦ (27) [27] 2 19 0.48 −12 22 0.91
7 CSIRO-Mk3-6-0 1.9◦ × 1.9◦ (18) [28] 0 14 0.79 2 12 0.98
8 GFDL-HIRAM-C180 0.5◦ × 0.625◦ (48) [29] 3 15 0.80 0 12 0.98
9 GFDL-HIRAM-C360 0.25◦ × 0.31◦ (48) [29] 3 15 0.78 0 11 0.98
10 GISS-E2-R 2◦ × 2.5◦ (40) [30] 1 21 0.33 0 17 0.96
11 HadGEM2-A 1.25◦ × 1.875◦ (60) [31] 7 17 0.85 1 25 0.98
12 INM-CM4 1.5◦ × 2◦ (21) [32] −6 17 0.64 −3 13 0.97
13 IPSL-CM5A-LR 1.875◦ × 3.75◦ (39) [33] 17 19 0.87 11 16 0.97
14 IPSL-CM5B-LR 1.875◦ × 3.75◦ (39) [34] 13 17 0.90 3 16 0.98
15 MIROC5 1.4◦ × 1.4◦ (40) [35] −6 16 0.51 −18 18 0.93
16 MPI-ESM-LR 1.9◦ × 1.9◦ (26) [36] 5 15 0.82 0 14 0.97
17 MPI-ESM-MR 1.9◦ × 1.9◦ (26) [36] 6 16 0.82 4 14 0.97
18 MRI-AGCM3-2H 0.56◦ × 0.56◦ (48) [37] 8 18 0.63 −4 14 0.94
19 MRI-AGCM3−2S 0.19◦ × 0.19◦ (48) [37] 9 18 0.62 −3 13 0.95
20 MRI-CGCM3 1.1◦ × 1.1◦ (48) [38] 4 22 0.55 −6 18 0.96

Model ensemble 4 16 0.73 −4 14 0.97
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Figure 1. The locations of RAMA (Indian Ocean), TAO (Pacific Ocean), and PIRATA (Atlantic Ocean) 
moored buoys in the tropical oceans that were used for this study. 

The annual mean shortwave and longwave radiation at the surface measured by the buoys have 
an uncertainty of about 5–6 W m−2, and 4 W m−2, respectively [39,40]. For the ISCCP, the biases in the 
monthly shortwave and longwave fluxes are less than 5 W m−2 [41] and 3 W m−2 [42], respectively, 
and are smaller for the annual means. For a consistent comparison, all the models and ISCCP data 
over 21 years (1979–2000) were bilinearly interpolated to monthly values in 2.5° × 2.5° boxes as the 
original ISCCP data is 3 hourly with 2.5° × 2.5° resolution. For comparison with buoys, we limit our 
calculation to 12 years (1997–2008) when all the buoy data are available. Note that, although ISCCP 
provides data for the total cloud cover, as well as low-, mid-, and high-level clouds [18], AMIP models 
only provide information for the total cloud cover. As a result, we only estimate bias in the total cloud 
cover for AMIP models. Also, monthly mean total cloud cover in AMIP includes both day and night, 
while QSW is influenced by cloud cover only during the daytime. As a result, the bias in QSW due to 
bias in cloudiness was not explored in this study. 
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also look at the seasonal cycle of the surface radiation over different ocean basins. 
  

Figure 1. The locations of RAMA (Indian Ocean), TAO (Pacific Ocean), and PIRATA (Atlantic Ocean)
moored buoys in the tropical oceans that were used for this study.

The annual mean shortwave and longwave radiation at the surface measured by the buoys have
an uncertainty of about 5–6 W m−2, and 4 W m−2, respectively [39,40]. For the ISCCP, the biases in the
monthly shortwave and longwave fluxes are less than 5 W m−2 [41] and 3 W m−2 [42], respectively,
and are smaller for the annual means. For a consistent comparison, all the models and ISCCP data
over 21 years (1979–2000) were bilinearly interpolated to monthly values in 2.5◦ × 2.5◦ boxes as the
original ISCCP data is 3 hourly with 2.5◦ × 2.5◦ resolution. For comparison with buoys, we limit our
calculation to 12 years (1997–2008) when all the buoy data are available. Note that, although ISCCP
provides data for the total cloud cover, as well as low-, mid-, and high-level clouds [18], AMIP models
only provide information for the total cloud cover. As a result, we only estimate bias in the total cloud
cover for AMIP models. Also, monthly mean total cloud cover in AMIP includes both day and night,
while QSW is influenced by cloud cover only during the daytime. As a result, the bias in QSW due to
bias in cloudiness was not explored in this study.

3. Model-data Comparisons

In this section, we provide a detailed comparison of the QLW and QSW from AMIP simulations
with those from the OAFlux dataset and moored buoys. In addition to the climatological mean, we
also look at the seasonal cycle of the surface radiation over different ocean basins.

3.1. Comparison with OAFlux

The climatological mean of the model ensemble (Figure 2a,b) and OAFlux data (Figure 2c,d) show
that the overall horizontal structure of surface radiation has been captured well. In particular, the
bias in QLW (Figure 2e) near the equator is within 10 W m−2. The bias in QSW (Figure 2f) is also small
(<10 W m−2) near the equator. The most prominent bias in radiation appears over the off-equatorial
eastern Pacific and the eastern Atlantic where the bias is statistically significant at the 95% level using a
Student’s t-test. There are, however, inter-model differences (Figures 3 and 4). For QLW (Figure 3), even
though most models show a large bias (~30 W m−2) in the off-equatorial eastern Pacific Ocean as seen
in the model ensemble mean (Figure 2e), the magnitude of the bias varies in different models. Only
two models (INM-CM4 and MIROC5 in Figure 3) show negative mean bias (i.e., underestimation of
QLW) when averaged over the entire tropical oceans which is consistent with earlier studies (e.g., [12]).
For QSW (Figure 4), about half of the models underestimate it. The overestimation of QSW in the
off-equatorial Pacific (Figure 4) is seen in all models with varying magnitudes and is consistent with
the bias in QSW in Figure 3. This indicates the possible role of clouds over cooler SST. All 20 models
show higher correlation coefficient (CC) in QSW than QLW. Wild et al. [13], and all 20 models found a
high correlation between models and observation for QSW. We believe this difference in the model skill
concerning surface radiation exists because the QDLW is a complex variable to capture in any model
and is not conventionally measured (e.g., [6]).
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gradually northward from around 15° S. Given that the models were forced by the observed SST, 
errors in QLW (see equation 2) come from the QDLW in the atmosphere and are explored in Section 4. 
The latitudinal variation in QSW bias shows underestimation (~8–14 W m−2) close to the equator 
(Figure 5, blue) in the presence of the Inter-tropical Convergence Zone (ITCZ), implying that the 
cloud cover in the model might have been overestimated in the models (see further in Section 4). Such 
bias remains a common problem even for higher resolution models (e.g., [43,44]) 

Figure 2. (left) Climatological average of the QLW from (a) model ensemble, (c) OAFlux and (e) model
ensemble minus OAFlux. Right panels are for QSW. Dotted areas in the bottom panels indicate where
the bias is statistically significant at the 95% level based on a Student’s t-test. (unit: W m−2).

The latitudinal distribution of bias in QLW in the Indian Ocean (Figure 5a, red) shows a maximum
bias around the equator that gradually reduces to a minimum around 15◦ N and 15◦ S latitudes before
increasing again at higher latitudes. In the Pacific (Figure 5b, red), the minimum bias is around 15◦ N,
similar to the Indian Ocean (Figure 5a). In the Atlantic (Figure 5c, red), QLW bias decreases gradually
northward from around 15◦ S. Given that the models were forced by the observed SST, errors in QLW
(see Equation (2)) come from the QDLW in the atmosphere and are explored in Section 4. The latitudinal
variation in QSW bias shows underestimation (~8–14 W m−2) close to the equator (Figure 5, blue) in the
presence of the Inter-tropical Convergence Zone (ITCZ), implying that the cloud cover in the model
might have been overestimated in the models (see further in Section 4). Such bias remains a common
problem even for higher resolution models (e.g., [43,44])
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Figure 5. Latitudinal distribution of bias (model ensemble minus OAFLux) in QLW (red solid line) and
QSW (blue dotted line) in the (a) Indian (40◦ E–100◦ E), (b) Pacific (100◦ E–80◦ W), and (c) Atlantic (80◦

W–10◦ E) oceans. (unit: w m−2).

The seasonal variation of bias in QLW (Figure 6, left) shows that models overestimate QLW over
the eastern Pacific and eastern Atlantic in all seasons. In the central pacific, away from the equator,
QLW is underestimated during June-July-August (JJA, Figure 6e) and September-October-November
(SON, Figure 6g). In the Arabian sea, QLW is underestimated in all seasons except during the summer
monsoon months (Figure 6e). Therefore, the models have large regional and seasonal biases and do
not often close the surface heat budget (e.g., [45]). For Qsw (Figure 6, right), the horizontal distribution
of bias also shows some systematic patterns. For example, there is a negative bias in the northwestern
Indian ocean in all seasons except during the JJA. There is positive bias in the eastern south Atlantic
Ocean and in the off-equatorial eastern Pacific, which is consistent with Zhang et al. [46], who also
found that models have a positive bias in QSW in the tropics. In the Atlantic, the hemispheric pattern
of bias reverses from DJF (Figure 6b) to JJA (Figure 6f). The seasonal bias in surface radiation and net
heat flux is summarized in Table 2. The possible reasons for such bias in surface radiative fluxes are
discussed in Section 4.
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Table 2. The seasonal and annual mean of QLW and QSW from the model ensemble and their bias
compared to the OAFlux (1979–2000) and moored buoys (1997–2008). Comparison with the OAFlux
was made over 30◦ S–30◦ N and 10◦ S–10◦ N (parentheses). The values were written to the closest
W m−2.

Qsurf

Seasons DJF MAM JJA SON Annual

Model Obs Bias Model Obs Bias Model Obs Bias Model Obs Bias Model Obs Bias

Comparison with OAFlux

QLW
58 55 3 59 53 6 57 51 6 55 52 3 57 53 4

(55) (53) (2) (57) (52) (5) (54) (51) (3) (51) (49) (2) (55) (51) (4)

QSW
226 230 −4 216 219 −3 212 216 −4 217 224 −7 218 222 −4

(226) (235) (−9) (223) (227) (−4) (220) (224) (−4) (229) (238) (−9) (225) (231) (−6)

Qnett
22 52 −30 14 48 −34 14 52 −38 21 51 −28 19 50 −31

(37) (61) (−24) (31) (57) (−26) (35) (55) (−20) (50) (72) (−22) (38) (63) (−25)

Comparison with Buoy data

QLW 54 53 1 57 54 3 56 52 4 57 52 5 56 53 3

QSW 227 231 −4 213 218 −5 214 219 −5 211 221 −10 216 222 −6

3.2. Comparison with Buoy Data

The surface radiation from the model and OAFlux are compared with moored buoys in Figure 7.
The OAFlux generally agrees well with the moored buoys, which provides confidence in our use of
OAFlux for model evaluation. The time-series of the model ensemble mean captures the seasonal
variability but always underestimates QSW and overestimates QLW, implying again that there is
systematic error in the model possibly coming from the overestimation of cloud and atmospheric water
vapor. The seasonal and annual mean bias compared to the buoy data is shown in Table 2. In both
QLW and QSW, the results are similar when compared to buoys and to OAFlux because radiation from
buoys and OAFlux were similar (Figure 7). For bias in Qnet, QSW, and QLW have similar contributions;
but the major contribution of bias in Qnet comes from the surface turbulent heat fluxes.
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4. On the Causes Behind Model Bias

Models can have significant uncertainties because of inaccuracies in input data and in the
surface flux retrieval algorithms or methods [47]. In this section, we explore the causes behind the
commonalities and differences between the simulated and observed radiation, with an emphasis on
the role played by different variables (e.g., cloud cover, atmospheric water vapor) that influence the
surface radiation.

4.1. Longwave (QLW)

The evaluation of the spatial structure of the simulated QLW (Figure 8a) shows that the CC
(correlation) is between 0.33 (GISS-E2-R) and 0.90 (IPSL-CM5B-LR). The standard deviation (SD, the
ratio of model standard deviation and observed standard deviation) is from 0.60 (GISS-E2-R) to 1.10
(IPSL-CM5A-LR). The QLW bias is expected to come from bias in cloud cover and atmospheric water
vapor content. The simulated cloud cover is better represented during the boreal summer (Figure 8c)
than that in boreal winter (Figure 8b). This seasonal difference in cloud cover bias leads to a larger bias
in surface radiation during JJA than DJF (Table 2). For example, compared to the buoy data, the bias in
QLW and QSW during DJF is 1 and −4 W m−2 compared to those during JJA of 3 and −5 W m−2. Most of
the bias in QLW comes from the QDLW (and not from the QULW) since QULW is determined by the SST,
and the SST was provided from observations. Similarly, the bias in QSW comes from the QDSW, which
is influenced by the cloud cover and atmospheric water vapor content. Models tend to underestimate
TPW in DJF (Figure 8b) but overestimate it in JJA (Figure 8c). The correlation is higher in JJA than DJF
for TPW.
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1 
 

 
Figure 8. Taylor diagrams showing the (a) climatological and (b,c) seasonal (DJF and JJA) mean bias of
QLW and QSW along with related variables including the total cloud cover (cl), and total precipitable
water (TPW) simulated by 20 AMIP models compared to OAFlux from 1979 to 2000. The numbers 1 to
20 represent 20 AMIP models.

The simulated total cloud cover is overestimated compared to the observation in most of the
tropics except parts of the southeastern Indian Ocean and eastern Pacific (Figure 9). One should,
however, be careful regarding the accuracy of the observed cloud cover. For example, high- (Figure 9b),
mid- (Figure 9d) and low-level (Figure 9f) clouds in ISCCP are observed from the satellite level.
Therefore, mid-level clouds are those that are not obstructed by high-level clouds [21,48]. Similarly,
low-level clouds are those that are not blocked by high- and mid-level clouds. The locations of the
low-level cloud cover (Figure 9f) are the regions mainly covered by stratus and stratocumulus clouds
over cooler SST (e.g., [49,50]). In the absence of cloud cover information at high-, mid-, and low-levels
from the AMIP simulations, we only show how the bias in QLW and QSW varies with the bias in total
cloud cover. Huber et al. [51] also found that the radiative fluxes show a high correlation with the total
cloud cover and the atmospheric water vapor.
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in QSW and total cloud cover (and precipitable water) was not performed (unlike QLW) due to 
unavailability of daytime data for cloud cover and precipitable water for AMIP simulations.  

Figure 9. (left) Total cloud cover (%) from the model ensemble (a), observation (c) and bias (e) (model
ensemble minus observation). (right) High- (b), mid- (d), and low-level (f) clouds (%) from the ISCCP
data. Dotted areas indicate where the bias is statistically significant at the 95% level.

The relationship between the bias in QLW and bias in total cloud cover and TPW from boreal
winter (DJF) and summer (JJA) is presented in Figures 10 and 11 over different tropical oceans. With an
overestimation in cloud cover (Figure 10), QLW is generally overestimated, indicating that QDLW is
underestimated (e.g., [12]). As expected, a positive bias in QLW appears when the cloud cover bias is
also positive over the Atlantic (Figure 10b, top right quadrant), and Pacific (Figure 10c,d, top right
quadrant), but this relationship is less clear over the Indian Ocean (Figure 10a), especially during DJF.
For regions with around 20% bias in cloud cover, the QLW bias has a broad range. Such larger variation
possibly comes from the height and other optical properties of the cloud and atmospheric water vapor
content. Similar to the cloud cover, TPW is also overestimated in most parts of the tropical oceans
(Figure 11). Irrespective of overestimation or underestimation in TPW, the QLW bias is mostly positive,
a result that also suggests its dependence on cloud cover (Figure 10). Overall, during the JJA, the TPW
bias is positive in all ocean basins, but during the DJF, TPW bias can be negative as well.
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Figure 10. Relationship between bias in the total cloud cover (%) and bias in QLW (W m−2) over the
(a) Indian (40◦ E–100◦ E), (b) Atlantic (70◦ W–10◦ E), (c) western Pacific (100◦ E–160◦ E), and (d) eastern
Pacific Oceans (120◦–70◦ W) during December-January-February (DJF, red) and June-July-August
(JJA, green).
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4.2. Shortwave (QSW)

Even though there is a systematic bias in QSW in all seasons (Figure 6, right), the correlation
between the simulated and observed QSW is always above 0.9 (Table 1), which is also consistent with
Loew et al. [14]. As was seen above for QLW, most of the bias in QSW also appears to come from bias
in the cloud cover. For example, the model overestimates QSW in the southern Indian Ocean, where
cloud cover shows a negative bias (comparing Figures 2f and 9e). The bias in QSW is driven by bias in
QDSW because QUSW is a function of QDSW and albedo (see Equations 3, 4). Since the QDSW is related to
the cloud cover and vertical humidity structure in the atmosphere, among other factors, differences
in QDSW are likely to be related to the model physics. For example, clouds enhance the planetary
albedo by reflecting QDSW to space, leading to a cooling effect on the earth’s surface. Large bias in
QSW in the southeast Pacific and southeast Indian Ocean (Figure 2f) is associated with the low-cloud
cover (Figure 9f). This low cloud appears to be missing in the AMIP models due to prevalence of
deep convection (and a lack of shallow convection) owing to cumulus parameterization that tends to
produce high-level convective clouds. On the other hand, underestimation of QSW near the equator
(Figure 2f) is over the region of high clouds (Figure 9b), and high clouds are likely overestimated in
the model (Figure 9e). Probst et al. [50] also found a similar result. The relationship between the
bias in QSW and total cloud cover (and precipitable water) was not performed (unlike QLW) due to
unavailability of daytime data for cloud cover and precipitable water for AMIP simulations.

5. Dependence on Model Resolutions

The horizontal resolution of the model has been found to be an important factor in correctly
simulating surface radiation (e.g., [10,12,15,52]). Therefore, we examine to what extent the
spatio-temporal bias of surface radiative fluxes in the models is related to the horizontal resolutions of
the models. This analysis is useful because it provides guidance when choosing a suitable resolution
for a model, particularly since we found (e.g., Table 1, Figure 8) that some high-resolution models tend
to simulate surface radiation better than others.

To quantify the possible role of the horizontal resolution of the models on the simulated surface
radiation, we split the models into two groups: models with <1.5◦ horizontal grid spacing (group 1) and
models with >1.5◦ horizontal grid spacing (group 2). The ACCESS1-0 (1.25◦ × 1.9◦) and HadGEM2-A
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(1.25◦ × 1.875◦) models were considered in group 1. Including these two models in group 2 changes
the results only slightly. In general, the models in group 1 have lower bias and RMSE, and higher CC,
than the models in group 2 (Table 3, Figure 12). The bias in QSW is larger in group 1 than group 2 due
to a large bias in two group 1 models (CNRM-CM5 and MIROC5, Figure 12b) both of which have grid
spacing of 1.4◦ × 1.4◦. On the other hand, the bias in QLW (Figure 12a) in group 2 is primarily due to
large biases in two models of the models of that group (IPSL-CM5A-LR and IPSL-CMPB-LR), both of
which have grid spacing of 1.875◦ × 3.75◦.Atmosphere 2019, 10, x FOR PEER REVIEW 15 of 20 
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(e,f) panels are for RMSE (W m−2) and CC, respectively.
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Table 3. Climatological bias, RMSE and CC (correlation) of QLW and QSW for high resolution
(group 1 < 1.5◦) and low-resolution (group 2 > 1.5◦) models. A comparison was made over 30◦ S–30◦ N
and 10◦ S–10◦ N (parentheses). The bias and RMSE were written to the closest W m−2.

Model
QLW QSW

Bias RMSE CC Bias RMSE CC

Group 1 (<1.5◦) 3 (3) 16 (13) 0.71 (0.74) −4 (−6) 14 (17) 0.96 (0.97)

Group 2 (>1.5◦) 5 (6) 18 (16) 0.73 (0.75) 1 (−5) 16 (21) 0.96 (0.96)

The overall slightly better performance of the high-resolution models than the coarse-resolution
models may not be attributed entirely to the horizontal resolutions, because these models use different
parameterization schemes (e.g., convection, radiation, and planetary boundary layer) that can cause
differences in cloud cover, precipitable water, and surface radiative fluxes. As a result, to explore
the influence of horizontal resolution, we need to compare results from models with the same
parameterization packages but with different horizontal resolutions. There are only two such sets in
our chosen models, one set consisting of two GFDL models and the other set consisting of three MRI
models (Table 1). In both sets, higher resolution versions of the models perform better than their coarse
resolution counterpart concerning RMSE (Table 1).

The influence of grid spacing on the spatial distribution of surface radiation bias is explored in
Figure 13. In general, group 1 models perform slightly better than group 2 models, but systematic bias
in the eastern Pacific, southeastern Atlantic, and the southeastern Indian Ocean persists in both group
of models. For QSW (Figure 13b,d), the bias along the equator is reduced in group 1 models, possibly
showing the importance of higher grid-spacing in correctly simulating surface radiation. In general,
models in group 1 have a relatively higher correlation and lower deviations than models in group 2
(Table 3, Figure 8). However, the difference between high- and low-resolution models is statistically
significant over most parts of the tropical oceans for QLW only (Figure 13e). For QSW (Figure 13f), the
difference between the two groups is statistically significant only close to the equator, showing the
influence of the high-level clouds in the ITCZ.
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6. Summary and Conclusion

Surface radiation is a major constituent of the surface energy budget that influences the earth’s
weather and climate. This study evaluates the ability of 20 models participating in AMIP to simulate
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the surface longwave (QLW) and shortwave (QSW) and explores several possible reasons behind model
bias over the tropical oceans during 22 years (1979−2000). The main conclusions could be summarized
as follows:

(1) For surface radiation, it is found that the western parts of the oceans generally have lower
biases than eastern parts (Figure 2). This difference in bias is likely because of errors in cloud cover
(e.g., [53]) in the simulations (Figures 9 and 10) and is not surprising given that the GCMs with
cumulus parameterization tend to underestimate low-level clouds over cooler SST (e.g., [49,53,54]).
Zhang et al. [55] also found that cloud cover causes the largest uncertainty in the downwelling
shortwave QDSW at the surface. The largest error comes from the coastal areas of off-equatorial eastern
Pacific Ocean. The bias varies over different seasons with the highest bias during the boreal summer,
but some systematic bias persists over all seasons (Figure 6, Table 2).

(2) The error in surface net longwave radiation QLW comes almost entirely from downwelling
longwave QDLW. The bias in upwelling longwave QULW is minimal because QULW is dependent on
the SST, and the SST was provided from the observations. The QDLW was underestimated in 16 out
of 20 models. This result is consistent with Garratt and Prata [12] who also found that the QDLW is
typically underestimated in GCMs. Clouds absorb and reemit longwave radiation back to the surface
having a great impact on QDLW (e.g., [56]).

(3) The RMSE in QLW was larger than that in QSW in all models except CNRM-CM5, HADGEM2-A,
and MIROC5 (Table 1). Interestingly, the correlation was higher for QSW than QLW in all 20 models
(Table 3, Figure 8). To what extent these errors in radiation were related to the cumulus parameterizations
of the models (e.g., May et al. 2012) or sampling biases (e.g., [57]) is left as an area of future work.

(4) Models with higher horizontal resolutions generally are slightly better at simulating
surface radiation than models with lower horizontal resolutions (Figures 12 and 13 and Table 3).
English et al. [15] along with several other studies (e.g., [12,13]), also confirmed that the accuracy in
surface radiative fluxes of any model is largely affected by its resolution. For example, the RMSE
in high-resolution models for QLW and QSW was lower by 3 and 2 W m−2, respectively than in
low-resolution models. Overall, GFDL-HIRAM-C180 and GFDL-HIRAM-C360 perform best for
surface radiative fluxes. Interestingly, these two models used cumulus parameterization that includes
shallow convection [58]. As a result, when the atmosphere is not sufficiently moist, deep convection can
be inhibited to the extent that a significant portion of the precipitation is controlled by the large-scale,
and not by the convection module [29].

In the model validation of surface radiation, apart from the observational uncertainty (see
Section 2), there are also issues related to model uncertainty coming from the temporal frequency of
the model output. Typically, model output was taken every six hours. As a result, in the presence of
large variation in the diurnal cycle of cloudiness over the tropical oceans, there would be sampling
biases for surface radiation. Even with these uncertainties in mind, the major implication of this
study is that the models perform poorly over regions of shallow convection. As a result, cumulus
parameterization in association with shallow convection scheme may be preferred to capture surface
radiation in a model adequately. The net radiation at the surface is nearly balanced by the surface
latent and sensible heat fluxes. Therefore, any error in the net surface radiation will invariably affect
the surface latent and sensible heat fluxes. In particular, surface latent heat flux is associated with the
surface evaporation, which is a component of the hydrological cycle and has important implications
for society [59]. It would be interesting to find whether the AMIP simulations in the forthcoming
CMIP6 models can capture the surface radiation better than AMIP simulations from CMIP5 models.

In summary, the AMIP simulations were able to capture the spatial distribution of surface radiation,
although with systematic biases, in particular, in the regions of low-level clouds. The bias was larger
for QLW than QSW, even though the absolute magnitude of QLW is much smaller than QSW. The higher
resolution models performed slightly better than lower resolution models for both QLW and QSW.
Two high-resolution GFDL models with a parameterization for shallow convection outperform the
ensemble mean. The models that perform best over the tropics overall may not be best over a particular



Atmosphere 2019, 10, 606 17 of 20

region. As a result, care must be taken to choose a model or a set of models when applied to a specific
area in the tropics.
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