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anomalies were then binned by active phase of the Real-time Multivariate MJO (R|\/||\/|; Wheeler and Hendon 2004) Figure 4. The magnitude (contoured) and quivered mean a) 10-m winds and d) surface ocean current in the BoB in July and August. b) The zonal 10-m wind (U) standard anomaly (contoured) with the Phase 6 average wind
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standard anomalies for each MJO phase and month pair was calculated using the two-sample t-test. Anomalies
significant at the 95% confidence level were indicated.

September-October, Phase 1

Method to select MJO phases for analysis September and October is a monsoonal transition season, where the intense southwesterly winds characteristic of the summer monsoon are
diminished (Fig. 5a). The center of convection associated with MJO phase 1 is geographically located near the coast of Africa (Fig. 3), and In

surface winds. To identify the month and phase pairs associated with the most significant anomalous surface wind this phase, there are stat. sig. negative U wind standard anomalies across the entire BoB (Fig. 5b). Stat. sig. negative V wind standard anomalies
forcing, the percentage of the U and V standard anomalies greater than 0.5 standard deviations over an area in the were relatively weak and limited to central and eastern regions of the BoB (Fig. 5¢). The mean ocean currents in the BoB during September and

BoB defined by 77°E-94°E and 5°N-25°N were calculated for every MJO phase and month pair (Table 1). This October (Fig. 5d) are also in transition with the remnant summer monsoon northern gyre (Fig. 2,4d) less organized. Figure 5e shows a broad
spatial area was selected to focus the analysis between the Indian subcontinent and the Andaman Island chain. Four and coherent area of stat. sig. negative u current anomalies south of 10°N, resulting in a reversal of the overall current field (toward the west).
ohases were found to have the greatest spatially coherent coverage of potentially impactful wind forcing: Phase 5 in The northeasterly mean current off the coast of Sri Lanka is weaker and shifted northward (Fig. 5f). The stat. sig. modulation of the current field

May-June, Phases 4 and 6 in July-August, Phase 1 in September-October, and Phase 2 in November-December. (particular south of 10 °N) is more reminiscent of the mean currents during the winter monsoon (Fig. 2). This suggests that intense and coherent
Thus, the surface ocean current anomalies in those phases are investigated in this study. stat. sig. MJO variability may play a role in transitioning the currents in the BoB between the summer and winter monsoons.

The hypothesis of this study is that surface ocean currents are modulated by the MJO via the MJO’s influence on
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