

Oceanography Department, U.S. Naval Academy, Annapolis MD

atmospheric circulation drives land- and sea-ice changes across the NAA.

research are to:

- *ice melt events across multiple time scales;*
- 2. Understand how atmospheric blocking and Rossby wave breaking impact, and are impacted by, the transport of moisture from mid-latitudes into the NAA; and
- Investigate the role of this moisture advection in altering radiative and turbulent fluxes, winds, precipitation, surface melting, and snow accumulation in the NAA.



- Blocking exhibits interannual variability with number of days with blocking increases in frequency from 1980-2017.

Figure 3: Frequency of extreme single day Greenland Blocking events per year from 1980-2017 at varying thresholds.

Shift to more frequent extreme blocking in recent years has seasonal dependence at the 90<sup>th</sup> percentile, but by the 97<sup>th</sup> and 99<sup>th</sup> percentiles, that

The most extreme blocking events (above the 97<sup>th</sup> and 99<sup>th</sup> percentiles) thus are more common in the 2<sup>nd</sup> half of the data record (1980-2017) in both seasons (DJF and JJA).

| Percentile<br>of GBI<br>Values | Season | Total Occurrences<br>within GBI<br>Percentile | Percent of Occ |   |
|--------------------------------|--------|-----------------------------------------------|----------------|---|
|                                |        |                                               | 1980-1999      | 2 |
| 90 <sup>th</sup>               | DJF    | 343                                           | 43             |   |
|                                | ALL    | 351                                           | 28             |   |
| 95 <sup>th</sup>               | DJF    | 172                                           | 37             |   |
|                                | ALL    | 175                                           | 26             |   |
| 97 <sup>th</sup>               | DJF    | 103                                           | 30             |   |
|                                | ALL    | 105                                           | 27             |   |
| 99 <sup>th</sup>               | DJF    | 34                                            | 21             |   |
|                                | ALL    | 35                                            | 17             |   |
|                                |        |                                               |                |   |

# Acknowledgements

This research is being conducted in collaboration with Dr. Thomas Mote, Dept. of Geography, University of Georgia, and is supported by the Strategic Environmental Research and Development Program (SERDP) and Environmental Security Technology Certification Program (ESTCP). This project could not have been done without the guidance of Instructor Alex Davies, Professor Bradford Barrett, and Professor Gina Henderson. SERDP Project Number: RC18-1658



